» Articles » PMID: 32816994

PGAP6, a GPI-specific Phospholipase A2, Has Narrow Substrate Specificity Against GPI-anchored Proteins

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2020 Aug 21
PMID 32816994
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

PGAP6, also known as TMEM8A, is a phospholipase A2 with specificity to glycosylphosphatidylinositol (GPI) and expressed on the surface of various cells. CRIPTO, a GPI-anchored co-receptor for a morphogenic factor Nodal, is a sensitive substrate of PGAP6. PGAP6-mediated shedding of CRIPTO plays a critical role in an early stage of embryogenesis. In contrast, CRYPTIC, a close family member of CRIPTO, is resistant to PGAP6. In this report, chimeras between CRIPTO and CRYPTIC and truncate mutants of PGAP6 were used to demonstrate that the Cripto-1/FRL1/Cryptic domain of CRIPTO is recognized by an N-terminal domain of PGAP6 for processing. We also report that among 56 human GPI-anchored proteins tested, only glypican 3, prostasin, SPACA4, and contactin-1, in addition to CRIPTO, are sensitive to PGAP6, indicating that PGAP6 has a narrow specificity toward various GPI-anchored proteins.

Citing Articles

A genome-wide CRISPR screen in mosquito cells identifies essential genes and required components of clodronate liposome function.

Mameli E, Samantsidis G, Viswanatha R, Kwon H, Hall D, Butnaru M bioRxiv. 2024; .

PMID: 39386635 PMC: 11463579. DOI: 10.1101/2024.09.24.614595.


Alternative polyadenylation quantitative trait methylation mapping in human cancers provides clues into the molecular mechanisms of APA.

Li Y, Gong J, Sun Q, Vong E, Cheng X, Wang B Am J Hum Genet. 2024; 111(3):562-583.

PMID: 38367620 PMC: 10940021. DOI: 10.1016/j.ajhg.2024.01.010.


Multiple genes in the Pate5-13 genomic region contribute to ADAM3 processing†.

Noda T, Shinohara H, Kobayashi S, Taira A, Oura S, Tahara D Biol Reprod. 2024; 110(4):750-760.

PMID: 38217862 PMC: 11017121. DOI: 10.1093/biolre/ioae008.


Secretory GFP reconstitution labeling of neighboring cells interrogates cell-cell interactions in metastatic niches.

Minegishi M, Kuchimaru T, Nishikawa K, Isagawa T, Iwano S, Iida K Nat Commun. 2023; 14(1):8031.

PMID: 38052804 PMC: 10697979. DOI: 10.1038/s41467-023-43855-2.


Identification of the glycosylphosphatidylinositol-specific phospholipase A2 (GPI-PLA2) that mediates GPI fatty acid remodeling in Trypanosoma brucei.

Ji Z, Nagar R, Duncan S, Guther M, Ferguson M J Biol Chem. 2023; 299(8):105016.

PMID: 37414151 PMC: 10457582. DOI: 10.1016/j.jbc.2023.105016.


References
1.
Tian T, Meng A . Nodal signals pattern vertebrate embryos. Cell Mol Life Sci. 2006; 63(6):672-85. PMC: 11136398. DOI: 10.1007/s00018-005-5503-7. View

2.
Fagerberg L, Hallstrom B, Oksvold P, Kampf C, Djureinovic D, Odeberg J . Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2013; 13(2):397-406. PMC: 3916642. DOI: 10.1074/mcp.M113.035600. View

3.
Foley S, van Vlijmen H, Boynton R, Adkins H, Cheung A, Singh J . The CRIPTO/FRL-1/CRYPTIC (CFC) domain of human Cripto. Functional and structural insights through disulfide structure analysis. Eur J Biochem. 2003; 270(17):3610-8. DOI: 10.1046/j.1432-1033.2003.03749.x. View

4.
Lev S . Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat Rev Mol Cell Biol. 2010; 11(10):739-50. DOI: 10.1038/nrm2971. View

5.
Millay D, ORourke J, Sutherland L, Bezprozvannaya S, Shelton J, Bassel-Duby R . Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature. 2013; 499(7458):301-5. PMC: 3739301. DOI: 10.1038/nature12343. View