» Articles » PMID: 32764038

The Proteasome Controls ESCRT-III-mediated Cell Division in an Archaeon

Abstract

is the closest experimentally tractable archaeal relative of eukaryotes and, despite lacking obvious cyclin-dependent kinase and cyclin homologs, has an ordered eukaryote-like cell cycle with distinct phases of DNA replication and division. Here, in exploring the mechanism of cell division in , we identify a role for the archaeal proteasome in regulating the transition from the end of one cell cycle to the beginning of the next. Further, we identify the archaeal ESCRT-III homolog, CdvB, as a key target of the proteasome and show that its degradation triggers division by allowing constriction of the CdvB1:CdvB2 ESCRT-III division ring. These findings offer a minimal mechanism for ESCRT-III-mediated membrane remodeling and point to a conserved role for the proteasome in eukaryotic and archaeal cell cycle control.

Citing Articles

Asgard archaea reveal the conserved principles of ESCRT-III membrane remodeling.

Souza D, Espadas J, Chaaban S, Moody E, Hatano T, Balasubramanian M Sci Adv. 2025; 11(6):eads5255.

PMID: 39919172 PMC: 11804906. DOI: 10.1126/sciadv.ads5255.


The Asgard archaeal ESCRT-III system forms helical filaments and remodels eukaryotic-like membranes.

Melnikov N, Junglas B, Halbi G, Nachmias D, Zerbib E, Gueta N EMBO J. 2025; 44(3):665-681.

PMID: 39753954 PMC: 11791191. DOI: 10.1038/s44318-024-00346-4.


A relay race of ESCRT-III paralogs drives cell division in a hyperthermophilic archaeon.

Liu J, Lelek M, Yang Y, Salles A, Zimmer C, Shen Y mBio. 2024; 16(2):e0099124.

PMID: 39699168 PMC: 11796394. DOI: 10.1128/mbio.00991-24.


The use of thermostable fluorescent proteins for live imaging in .

Recalde A, Abdul-Nabi J, Junker P, van der Does C, Elsasser J, van Wolferen M Front Microbiol. 2024; 15:1445186.

PMID: 39314874 PMC: 11416942. DOI: 10.3389/fmicb.2024.1445186.


Role of extracellular vesicle-associated proteins in the progression, diagnosis, and treatment of hepatocellular carcinoma.

Liu Y, Jiang S, Zhang J, Zheng H, Zhang L, Zhao H Cell Biosci. 2024; 14(1):113.

PMID: 39227992 PMC: 11373138. DOI: 10.1186/s13578-024-01294-6.


References
1.
Bernander R . The cell cycle of Sulfolobus. Mol Microbiol. 2007; 66(3):557-62. DOI: 10.1111/j.1365-2958.2007.05917.x. View

2.
Samson R, Obita T, Hodgson B, Shaw M, Chong P, Williams R . Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division. Mol Cell. 2011; 41(2):186-96. PMC: 3763469. DOI: 10.1016/j.molcel.2010.12.018. View

3.
Dobro M, Samson R, Yu Z, McCullough J, Ding H, Chong P . Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission. Mol Biol Cell. 2013; 24(15):2319-27. PMC: 3727925. DOI: 10.1091/mbc.E12-11-0785. View

4.
Lindas A, Karlsson E, Lindgren M, Ettema T, Bernander R . A unique cell division machinery in the Archaea. Proc Natl Acad Sci U S A. 2008; 105(48):18942-6. PMC: 2596248. DOI: 10.1073/pnas.0809467105. View

5.
Lang S, Huang L . The Sulfolobus solfataricus GINS Complex Stimulates DNA Binding and Processive DNA Unwinding by Minichromosome Maintenance Helicase. J Bacteriol. 2015; 197(21):3409-20. PMC: 4621065. DOI: 10.1128/JB.00496-15. View