» Articles » PMID: 32743875

Mimicking Photosystem I with a Transmembrane Light Harvester and Energy Transfer-Induced Photoreduction in Phospholipid Bilayers

Overview
Journal Chemistry
Specialty Chemistry
Date 2020 Aug 4
PMID 32743875
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Photosystem I (PS I) is a transmembrane protein that assembles perpendicular to the membrane, and performs light harvesting, energy transfer, and electron transfer to a final, water-soluble electron acceptor. We present here a supramolecular model of it formed by a bicationic oligofluorene 1 bound to the bisanionic photoredox catalyst eosin Y (EY ) in phospholipid bilayers. According to confocal microscopy, molecular modeling, and time dependent density functional theory calculations, 1 prefers to align perpendicularly to the lipid bilayer. In presence of EY , a strong complex is formed (K =2.1±0.1×10  m ), which upon excitation of 1 leads to efficient energy transfer to EY . Follow-up electron transfer from the excited state of EY to the water-soluble electron donor EDTA was shown via UV-Vis absorption spectroscopy. Overall, controlled self-assembly and photochemistry within the membrane provides an unprecedented yet simple synthetic functional mimic of PS I.

Citing Articles

Engineering of bespoke photosensitiser-microbe interfaces for enhanced semi-artificial photosynthesis.

Bishara Robertson I, Zhang H, Reisner E, Butt J, Jeuken L Chem Sci. 2024; 15(26):9893-9914.

PMID: 38966358 PMC: 11220614. DOI: 10.1039/d4sc00864b.


Bioinspired photocatalytic systems towards compartmentalized artificial photosynthesis.

Velasco-Garcia L, Casadevall C Commun Chem. 2023; 6(1):263.

PMID: 38049562 PMC: 10695942. DOI: 10.1038/s42004-023-01069-z.


Alignment and photooxidation dynamics of a perylene diimide chromophore in lipid bilayers.

Sinambela N, Jacobi R, Hernandez-Castillo D, Hofmeister E, Hagmeyer N, Dietzek-Ivansic B Mol Syst Des Eng. 2023; 8(7):842-852.

PMID: 37404447 PMC: 10317050. DOI: 10.1039/d2me00243d.


Computation of Förster Resonance Energy Transfer in Lipid Bilayer Membranes.

Jacobi R, Hernandez-Castillo D, Sinambela N, Bosking J, Pannwitz A, Gonzalez L J Phys Chem A. 2022; 126(43):8070-8081.

PMID: 36260519 PMC: 9639162. DOI: 10.1021/acs.jpca.2c04524.


Mechanistic Insights into the Charge Transfer Dynamics of Photocatalytic Water Oxidation at the Lipid Bilayer-Water Interface.

Song H, Amati A, Pannwitz A, Bonnet S, Hammarstrom L J Am Chem Soc. 2022; 144(42):19353-19364.

PMID: 36250745 PMC: 9619399. DOI: 10.1021/jacs.2c06842.


References
1.
Stikane A, Hwang E, Ainsworth E, Piper S, Critchley K, Butt J . Towards compartmentalized photocatalysis: multihaem proteins as transmembrane molecular electron conduits. Faraday Discuss. 2019; 215(0):26-38. DOI: 10.1039/c8fd00163d. View

2.
Limburg B, Laisne G, Bouwman E, Bonnet S . Enhanced photoinduced electron transfer at the surface of charged lipid bilayers. Chemistry. 2014; 20(29):8965-72. DOI: 10.1002/chem.201402712. View

3.
Troppmann S, Konig B . Functionalized membranes for photocatalytic hydrogen production. Chemistry. 2014; 20(45):14570-4. DOI: 10.1002/chem.201404480. View

4.
Limburg B, Bouwman E, Bonnet S . Catalytic photoinduced electron transport across a lipid bilayer mediated by a membrane-soluble electron relay. Chem Commun (Camb). 2015; 51(96):17128-31. DOI: 10.1039/c5cc07745a. View

5.
Sudhakar M, Djurovich P, Hogen-Esch T, Thompson M . Phosphorescence quenching by conjugated polymers. J Am Chem Soc. 2003; 125(26):7796-7. DOI: 10.1021/ja0343297. View