» Articles » PMID: 32706384

Development of a Deep Learning Model to Identify Lymph Node Metastasis on Magnetic Resonance Imaging in Patients With Cervical Cancer

Overview
Journal JAMA Netw Open
Specialty General Medicine
Date 2020 Jul 25
PMID 32706384
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Importance: Accurate identification of lymph node metastasis preoperatively and noninvasively in patients with cervical cancer can avoid unnecessary surgical intervention and benefit treatment planning.

Objective: To develop a deep learning model using preoperative magnetic resonance imaging for prediction of lymph node metastasis in cervical cancer.

Design, Setting, And Participants: This diagnostic study developed an end-to-end deep learning model to identify lymph node metastasis in cervical cancer using magnetic resonance imaging (MRI). A total of 894 patients with stage IB to IIB cervical cancer who underwent radical hysterectomy and pelvic lymphadenectomy were reviewed. All patients underwent radical hysterectomy and pelvic lymphadenectomy, received pelvic MRI within 2 weeks before the operations, had no concurrent cancers, and received no preoperative treatment. To achieve the optimal model, the diagnostic value of 3 MRI sequences was compared, and the outcomes in the intratumoral and peritumoral regions were explored. To mine tumor information from both image and clinicopathologic levels, a hybrid model was built and its prognostic value was assessed by Kaplan-Meier analysis. The deep learning model and hybrid model were developed on a primary cohort consisting of 338 patients (218 patients from Sun Yat-sen University Cancer Center, Guangzhou, China, between January 2011 and December 2017 and 120 patients from Henan Provincial People's Hospital, Zhengzhou, China, between December 2016 and June 2018). The models then were evaluated on an independent validation cohort consisting of 141 patients from Yunnan Cancer Hospital, Kunming, China, between January 2011 and December 2017.

Main Outcomes And Measures: The primary diagnostic outcome was lymph node metastasis status, with the pathologic characteristics diagnosed by lymphadenectomy. The secondary primary clinical outcome was survival. The primary diagnostic outcome was assessed by receiver operating characteristic (area under the curve [AUC]) analysis; the primary clinical outcome was assessed by Kaplan-Meier survival analysis.

Results: A total of 479 patients (mean [SD] age, 49.1 [9.7] years) fulfilled the eligibility criteria and were enrolled in the primary (n = 338) and validation (n = 141) cohorts. A total of 71 patients (21.0%) in the primary cohort and 32 patients (22.7%) in the validation cohort had lymph node metastais confirmed by lymphadenectomy. Among the 3 image sequences, the deep learning model that used both intratumoral and peritumoral regions on contrast-enhanced T1-weighted imaging showed the best performance (AUC, 0.844; 95% CI, 0.780-0.907). These results were further improved in a hybrid model that combined tumor image information mined by deep learning model and MRI-reported lymph node status (AUC, 0.933; 95% CI, 0.887-0.979). Moreover, the hybrid model was significantly associated with disease-free survival from cervical cancer (hazard ratio, 4.59; 95% CI, 2.04-10.31; P < .001).

Conclusions And Relevance: The findings of this study suggest that deep learning can be used as a preoperative noninvasive tool to diagnose lymph node metastasis in cervical cancer.

Citing Articles

Predicting lymph node metastasis in papillary thyroid carcinoma: radiomics using two types of ultrasound elastography.

Zhang X, Zhang D, Zhou W, Wang Z, Zhang C, Li J Cancer Imaging. 2025; 25(1):13.

PMID: 39948651 PMC: 11827213. DOI: 10.1186/s40644-025-00832-w.


Current Paradigm and Future Directions in the Management of Nodal Disease in Locally Advanced Cervical Cancer.

Cheung E, Wu P Cancers (Basel). 2025; 17(2).

PMID: 39857985 PMC: 11764200. DOI: 10.3390/cancers17020202.


The deep learning radiomics nomogram helps to evaluate the lymph node status in cervical adenocarcinoma/adenosquamous carcinoma.

Xiao M, Fu L, Qian T, Wei Y, Ma F, Li Y Front Oncol. 2024; 14:1414609.

PMID: 39735600 PMC: 11671353. DOI: 10.3389/fonc.2024.1414609.


Ranking attention multiple instance learning for lymph node metastasis prediction on multicenter cervical cancer MRI.

Jin S, Xu H, Dong Y, Wang X, Hao X, Qin F J Appl Clin Med Phys. 2024; 25(12):e14547.

PMID: 39369718 PMC: 11633800. DOI: 10.1002/acm2.14547.


A 3 M Evaluation Protocol for Examining Lymph Nodes in Cancer Patients: Multi-Modal, Multi-Omics, Multi-Stage Approach.

Wang R, Zhang Z, Zhao M, Zhu G Technol Cancer Res Treat. 2024; 23:15330338241277389.

PMID: 39267420 PMC: 11456957. DOI: 10.1177/15330338241277389.


References
1.
Botting S, Fouad H, Elwell K, Rampy B, Salama S, Freeman D . Prognostic significance of peritumoral lymphatic vessel density and vascular endothelial growth factor receptor 3 in invasive squamous cell cervical cancer. Transl Oncol. 2010; 3(3):170-5. PMC: 2887646. DOI: 10.1593/tlo.09292. View

2.
Balcacer P, Shergill A, Litkouhi B . MRI of cervical cancer with a surgical perspective: staging, prognostic implications and pitfalls. Abdom Radiol (NY). 2019; 44(7):2557-2571. DOI: 10.1007/s00261-019-01984-7. View

3.
Lecuru F, Mathevet P, Querleu D, Leblanc E, Morice P, Darai E . Bilateral negative sentinel nodes accurately predict absence of lymph node metastasis in early cervical cancer: results of the SENTICOL study. J Clin Oncol. 2011; 29(13):1686-91. DOI: 10.1200/JCO.2010.32.0432. View

4.
LeCun Y, Bengio Y, Hinton G . Deep learning. Nature. 2015; 521(7553):436-44. DOI: 10.1038/nature14539. View

5.
Wang S, Liu Z, Rong Y, Zhou B, Bai Y, Wei W . Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer. Radiother Oncol. 2018; 132:171-177. DOI: 10.1016/j.radonc.2018.10.019. View