» Articles » PMID: 32699824

Informative Missingness in Electronic Health Record Systems: the Curse of Knowing

Overview
Journal Diagn Progn Res
Publisher Biomed Central
Date 2020 Jul 24
PMID 32699824
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

Electronic health records provide a potentially valuable data source of information for developing clinical prediction models. However, missing data are common in routinely collected health data and often missingness is informative. Informative missingness can be incorporated in a clinical prediction model, for example by including a separate category of a predictor variable that has missing values. The predictive performance of such a model depends on the transportability of the missing data mechanism, which may be compromised once the model is deployed in practice and the predictive value of certain variables becomes known. Using synthetic data, this phenomenon is explained and illustrated.

Citing Articles

Comparing conventional and Bayesian workflows for clinical outcome prediction modelling with an exemplar cohort study of severe COVID-19 infection incorporating clinical biomarker test results.

Sullivan B, Barker E, MacGregor L, Gorman L, Williams P, Bhamber R BMC Med Inform Decis Mak. 2025; 25(1):123.

PMID: 40065374 PMC: 11892292. DOI: 10.1186/s12911-025-02955-3.


Value of hospital administrative data linked to national cancer registry records to identify metastatic disease at time of primary diagnosis in colorectal cancer patients: a study using national data in England.

Almilaji O, Sharples L, Aggarwal A, Cromwell D, Horgan K, Braun M BMC Cancer. 2025; 25(1):407.

PMID: 40050770 PMC: 11887144. DOI: 10.1186/s12885-025-13777-x.


Evolving racial/ethnic disparities in AML survival in the novel therapy era.

Wang X, Gimotty P, Matthews A, Mamtani R, Luger S, Hexner E Blood Adv. 2025; 9(3):533-544.

PMID: 39888631 PMC: 11821405. DOI: 10.1182/bloodadvances.2024014127.


An optimal antibiotic selection framework for Sepsis patients using Artificial Intelligence.

Wendland P, Schenkel-Hager C, Wenningmann I, Kschischo M NPJ Digit Med. 2024; 7(1):343.

PMID: 39613924 PMC: 11607445. DOI: 10.1038/s41746-024-01350-y.


Applying a transformer architecture to intraoperative temporal dynamics improves the prediction of postoperative delirium.

Giesa N, Sekutowicz M, Rubarth K, Spies C, Balzer F, Haufe S Commun Med (Lond). 2024; 4(1):251.

PMID: 39604566 PMC: 11603037. DOI: 10.1038/s43856-024-00681-x.


References
1.
Lenert M, Matheny M, Walsh C . Prognostic models will be victims of their own success, unless…. J Am Med Inform Assoc. 2019; 26(12):1645-1650. PMC: 6857506. DOI: 10.1093/jamia/ocz145. View

2.
Hemingway H, Asselbergs F, Danesh J, Dobson R, Maniadakis N, Maggioni A . Big data from electronic health records for early and late translational cardiovascular research: challenges and potential. Eur Heart J. 2018; 39(16):1481-1495. PMC: 6019015. DOI: 10.1093/eurheartj/ehx487. View

3.
Beam A, Kohane I . Big Data and Machine Learning in Health Care. JAMA. 2018; 319(13):1317-1318. DOI: 10.1001/jama.2017.18391. View

4.
McKinstry B . All watched over by machines of loving grace: an optimistic view of big data. BMJ. 2017; 358:j3967. DOI: 10.1136/bmj.j3967. View

5.
Tierney N, Harden F, Harden M, Mengersen K . Using decision trees to understand structure in missing data. BMJ Open. 2015; 5(6):e007450. PMC: 4486966. DOI: 10.1136/bmjopen-2014-007450. View