» Articles » PMID: 32683453

UMLS Users and Uses: a Current Overview

Overview
Date 2020 Jul 20
PMID 32683453
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The US National Library of Medicine regularly collects summary data on direct use of Unified Medical Language System (UMLS) resources. The summary data sources include UMLS user registration data, required annual reports submitted by registered users, and statistics on downloads and application programming interface calls. In 2019, the National Library of Medicine analyzed the summary data on 2018 UMLS use. The library also conducted a scoping review of the literature to provide additional intelligence about the research uses of UMLS as input to a planned 2020 review of UMLS production methods and priorities. 5043 direct users of UMLS data and tools downloaded 4402 copies of the UMLS resources and issued 66 130 951 UMLS application programming interface requests in 2018. The annual reports and the scoping review results agree that the primary UMLS uses are to process and interpret text and facilitate mapping or linking between terminologies. These uses align with the original stated purpose of the UMLS.

Citing Articles

Implications of mappings between International Classification of Diseases clinical diagnosis codes and Human Phenotype Ontology terms.

Tan A, Goncalves R, Yuan W, Brat G, Gentleman R, Kohane I JAMIA Open. 2024; 7(4):ooae118.

PMID: 39559493 PMC: 11570992. DOI: 10.1093/jamiaopen/ooae118.


Mapping vaccine names in clinical trials to vaccine ontology using cascaded fine-tuned domain-specific language models.

Li J, Li Y, Pan Y, Guo J, Sun Z, Li F J Biomed Semantics. 2024; 15(1):14.

PMID: 39123237 PMC: 11316402. DOI: 10.1186/s13326-024-00318-x.


Enabling Semantic Topic Modeling on Twitter Using MetaMap.

Shyu R, Weng C AMIA Jt Summits Transl Sci Proc. 2024; 2024:670-678.

PMID: 38827089 PMC: 11141808.


Europe's Largest Research Infrastructure for Curated Medical Data Models with Semantic Annotations.

Riepenhausen S, Blumenstock M, Niklas C, Hegselmann S, Neuhaus P, Meidt A Methods Inf Med. 2024; 63(1-02):52-61.

PMID: 38740374 PMC: 11495939. DOI: 10.1055/s-0044-1786839.


Evaluating MedDRA-to-ICD terminology mappings.

Zhang X, Feng Y, Li F, Ding J, Tahseen D, Hinojosa E BMC Med Inform Decis Mak. 2024; 23(Suppl 4):299.

PMID: 38326827 PMC: 10851449. DOI: 10.1186/s12911-023-02375-1.


References
1.
Soysal E, Wang J, Jiang M, Wu Y, Pakhomov S, Liu H . CLAMP - a toolkit for efficiently building customized clinical natural language processing pipelines. J Am Med Inform Assoc. 2017; 25(3):331-336. PMC: 7378877. DOI: 10.1093/jamia/ocx132. View

2.
Jimeno-Yepes A, MacKinlay A, Han B, Chen Q . Identifying Diseases, Drugs, and Symptoms in Twitter. Stud Health Technol Inform. 2015; 216:643-7. View

3.
Aronson A . Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. Proc AMIA Symp. 2002; :17-21. PMC: 2243666. View

4.
Fiszman M, Rindflesch T, Kilicoglu H . Summarizing drug information in Medline citations. AMIA Annu Symp Proc. 2007; :254-8. PMC: 1839479. View

5.
Humphreys B, Lindberg D . The UMLS project: making the conceptual connection between users and the information they need. Bull Med Libr Assoc. 1993; 81(2):170-7. PMC: 225759. View