» Articles » PMID: 32677381

Tube Voltage, DNA Double-Strand Breaks, and Image Quality in Coronary CT Angiography

Overview
Journal Korean J Radiol
Specialty Radiology
Date 2020 Jul 18
PMID 32677381
Authors
Affiliations
Soon will be listed here.
Abstract

Objective: To evaluate the effects of tube voltage on image quality in coronary CT angiography (CCTA), the estimated radiation dose, and DNA double-strand breaks (DSBs) in peripheral blood lymphocytes to optimize the use of CCTA in the era of low radiation doses.

Materials And Methods: This study included 240 patients who were divided into 2 groups according to the DNA DSB analysis methods, i.e., immunofluorescence microscopy and flow cytometry. Each group was subdivided into 4 subgroups: those receiving CCTA only with different tube voltages of 120, 100, 80, or 70 kVp. Objective and subjective image quality was evaluated by analysis of variance. Radiation dosages were also recorded and compared.

Results: There was no significant difference in demographic characteristics between the 2 groups and 4 subgroups in each group (all > 0.05). As tube voltage decreased, both image quality and radiation dose decreased gradually and significantly. After CCTA, γ-H2AX foci and mean fluorescence intensity in the 120-, 100-, 80-, and 70-kVp groups increased by 0.14, 0.09, 0.07, and 0.06 foci per cell and 21.26, 9.13, 8.10, and 7.13 (all < 0.05), respectively. The increase in the DNA DSB level in the 120-kVp group was higher than those in the other 3 groups (all < 0.05), while there was no significant difference in the DSBs levels among these latter groups (all > 0.05).

Conclusion: The 100-kVp tube voltage may be optimal for CCTA when weighing DNA DSBs against the estimated radiation dose and image quality, with further reductions in tube voltage being unnecessary for CCTA.

References
1.
Spearman J, Schoepf U, Rottenkolber M, Driesser I, Canstein C, Thierfelder K . Effect of Automated Attenuation-based Tube Voltage Selection on Radiation Dose at CT: An Observational Study on a Global Scale. Radiology. 2015; 279(1):167-74. DOI: 10.1148/radiol.2015141507. View

2.
Zhang L, Qi L, De Cecco C, Zhou C, Spearman J, Schoepf U . High-pitch coronary CT angiography at 70 kVp with low contrast medium volume: comparison of 80 and 100 kVp high-pitch protocols. Medicine (Baltimore). 2014; 93(22):e92. PMC: 4616317. DOI: 10.1097/MD.0000000000000092. View

3.
Cadet J, Douki T, Ravanat J . Oxidatively generated base damage to cellular DNA. Free Radic Biol Med. 2010; 49(1):9-21. DOI: 10.1016/j.freeradbiomed.2010.03.025. View

4.
Zhang L, Qi L, Wang J, Xiang Tang C, Zhou C, Ji X . Feasibility of prospectively ECG-triggered high-pitch coronary CT angiography with 30 mL iodinated contrast agent at 70 kVp: initial experience. Eur Radiol. 2014; 24(7):1537-46. DOI: 10.1007/s00330-014-3157-2. View

5.
Berrington de Gonzalez A, Darby S . Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004; 363(9406):345-51. DOI: 10.1016/S0140-6736(04)15433-0. View