» Articles » PMID: 32671330

Deep Learning Decodes the Principles of Differential Gene Expression

Overview
Journal Nat Mach Intell
Publisher Springer Nature
Date 2020 Jul 17
PMID 32671330
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Identifying the molecular mechanisms that control differential gene expression (DE) is a major goal of basic and disease biology. We develop a systems biology model to predict DE, and mine the biological basis of the factors that influence predicted gene expression, in order to understand how it may be generated. This model, called , utilizes deep learning to predict DE based on genome-wide binding sites on RNAs and promoters. Ranking predictive factors from the DEcode indicates that clinically relevant expression changes between thousands of individuals can be predicted mainly through the joint action of post-transcriptional RNA-binding factors. We also show the broad potential applications of DEcode to generate biological insights, by predicting DE between tissues, differential transcript-usage, and drivers of aging throughout the human lifespan, of gene coexpression relationships on a genome-wide scale, and of frequently DE genes across diverse conditions. Researchers can freely utilize DEcode to identify influential molecular mechanisms for any human expression data - www.differentialexpression.org.

Citing Articles

Phenotype prediction in plants is improved by integrating large-scale transcriptomic datasets.

Wu Z, Sun Y, Zhao X, Liu Z, Zhou W, Niu Y NAR Genom Bioinform. 2024; 6(4):lqae184.

PMID: 39735343 PMC: 11672113. DOI: 10.1093/nargab/lqae184.


Applying interpretable machine learning in computational biology-pitfalls, recommendations and opportunities for new developments.

Chen V, Yang M, Cui W, Kim J, Talwalkar A, Ma J Nat Methods. 2024; 21(8):1454-1461.

PMID: 39122941 PMC: 11348280. DOI: 10.1038/s41592-024-02359-7.


Big data and deep learning for RNA biology.

Hwang H, Jeon H, Yeo N, Baek D Exp Mol Med. 2024; 56(6):1293-1321.

PMID: 38871816 PMC: 11263376. DOI: 10.1038/s12276-024-01243-w.


DeepCBA: A deep learning framework for gene expression prediction in maize based on DNA sequences and chromatin interactions.

Wang Z, Peng Y, Li J, Li J, Yuan H, Yang S Plant Commun. 2024; 5(9):100985.

PMID: 38859587 PMC: 11413363. DOI: 10.1016/j.xplc.2024.100985.


The hitchhikers' guide to RNA sequencing and functional analysis.

Chen J, Shrestha L, Green G, Leier A, Marquez-Lago T Brief Bioinform. 2023; 24(1).

PMID: 36617463 PMC: 9851315. DOI: 10.1093/bib/bbac529.


References
1.
Clarke D, Kuleshov M, Schilder B, Torre D, Duffy M, Keenan A . eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks. Nucleic Acids Res. 2018; 46(W1):W171-W179. PMC: 6030863. DOI: 10.1093/nar/gky458. View

2.
Chen E, Tan C, Kou Y, Duan Q, Wang Z, Meirelles G . Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013; 14:128. PMC: 3637064. DOI: 10.1186/1471-2105-14-128. View

3.
Gerstberger S, Hafner M, Tuschl T . A census of human RNA-binding proteins. Nat Rev Genet. 2014; 15(12):829-45. PMC: 11148870. DOI: 10.1038/nrg3813. View

4.
Lek M, Karczewski K, Minikel E, Samocha K, Banks E, Fennell T . Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016; 536(7616):285-91. PMC: 5018207. DOI: 10.1038/nature19057. View

5.
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J . pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011; 12:77. PMC: 3068975. DOI: 10.1186/1471-2105-12-77. View