» Articles » PMID: 32661253

Vacancies on 2D Transition Metal Dichalcogenides Elicit Ferroptotic Cell Death

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Jul 15
PMID 32661253
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Sustainable developments of nanotechnology necessitate the exploration of structure-activity relationships (SARs) at nano-bio interfaces. While ferroptosis may contribute in the developments of some severe diseases (e.g., Parkinson's disease, stroke and tumors), the cellular pathways and nano-SARs are rarely explored in diseases elicited by nano-sized ferroptosis inducers. Here we find that WS and MoS nanosheets induce an iron-dependent cell death, ferroptosis in epithelial (BEAS-2B) and macrophage (THP-1) cells, evidenced by the suppression of glutathione peroxidase 4 (GPX4), oxygen radical generation and lipid peroxidation. Notably, nano-SAR analysis of 20 transition metal dichalcogenides (TMDs) disclosures the decisive role of surface vacancy in ferroptosis. We therefore develop methanol and sulfide passivation as safe design approaches for TMD nanosheets. These findings are validated in animal lungs by oropharyngeal aspiration of TMD nanosheets. Overall, our study highlights the key cellular events as well as nano-SARs in TMD-induced ferroptosis, which may facilitate the safe design of nanoproducts.

Citing Articles

Intracellular dehydrogenation catalysis leads to reductive stress and immunosuppression.

Jiang J, Zheng H, Wang Z, Wang X, Xie Q, Liu X Nat Nanotechnol. 2025; .

PMID: 39979398 DOI: 10.1038/s41565-025-01870-y.


Safety Assessment of Graphene-Based Materials.

Fadeel B, Baker J, Ballerini L, Bussy C, Candotto Carniel F, Tretiach M Small. 2025; 21(7):e2404570.

PMID: 39811884 PMC: 11840464. DOI: 10.1002/smll.202404570.


Deciphering key nano-bio interface descriptors to predict nanoparticle-induced lung fibrosis.

Cao J, Yang Y, Liu X, Huang Y, Xie Q, Kadushkin A Part Fibre Toxicol. 2025; 22(1):1.

PMID: 39810232 PMC: 11731361. DOI: 10.1186/s12989-024-00616-3.


Triggered ferroptotic albumin-tocopherol nanocarriers for treating drug-resistant breast cancer.

Gao Q, Liu T, Sun L, Yao Y, Li F, Mao L Front Oncol. 2024; 14:1464909.

PMID: 39507754 PMC: 11538061. DOI: 10.3389/fonc.2024.1464909.


Approaches to Nanoparticle Labeling: A Review of Fluorescent, Radiological, and Metallic Techniques.

Chen H, Hu Q, Li W, Cai X, Mao L, Li R Environ Health (Wash). 2024; 1(2):75-89.

PMID: 39473584 PMC: 11504608. DOI: 10.1021/envhealth.3c00034.


References
1.
McManus D, Vranic S, Withers F, Sanchez-Romaguera V, Macucci M, Yang H . Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat Nanotechnol. 2017; 12(4):343-350. DOI: 10.1038/nnano.2016.281. View

2.
Chung H, Vilaysane A, Lau A, Stahl M, Morampudi V, Bondzi-Simpson A . NLRP3 regulates a non-canonical platform for caspase-8 activation during epithelial cell apoptosis. Cell Death Differ. 2016; 23(8):1331-46. PMC: 4947664. DOI: 10.1038/cdd.2016.14. View

3.
Liu R, Rallo R, George S, Ji Z, Nair S, Nel A . Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles. Small. 2011; 7(8):1118-26. PMC: 3970551. DOI: 10.1002/smll.201002366. View

4.
Gao M, Monian P, Quadri N, Ramasamy R, Jiang X . Glutaminolysis and Transferrin Regulate Ferroptosis. Mol Cell. 2015; 59(2):298-308. PMC: 4506736. DOI: 10.1016/j.molcel.2015.06.011. View

5.
Hong J, Nakano Y, Yokomakura A, Ishihara K, Kim S, Kang Y . Nitric oxide production by the vacuolar-type (H+)-ATPase inhibitors bafilomycin A1 and concanamycin A and its possible role in apoptosis in RAW 264.7 cells. J Pharmacol Exp Ther. 2006; 319(2):672-81. DOI: 10.1124/jpet.106.109280. View