» Articles » PMID: 32614448

Scirpy: a Scanpy Extension for Analyzing Single-cell T-cell Receptor-sequencing Data

Overview
Journal Bioinformatics
Specialty Biology
Date 2020 Jul 3
PMID 32614448
Citations 88
Authors
Affiliations
Soon will be listed here.
Abstract

Summary: Advances in single-cell technologies have enabled the investigation of T-cell phenotypes and repertoires at unprecedented resolution and scale. Bioinformatic methods for the efficient analysis of these large-scale datasets are instrumental for advancing our understanding of adaptive immune responses. However, while well-established solutions are accessible for the processing of single-cell transcriptomes, no streamlined pipelines are available for the comprehensive characterization of T-cell receptors. Here, we propose single-cell immune repertoires in Python (Scirpy), a scalable Python toolkit that provides simplified access to the analysis and visualization of immune repertoires from single cells and seamless integration with transcriptomic data.

Availability And Implementation: Scirpy source code and documentation are available at https://github.com/icbi-lab/scirpy.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Citing Articles

Pre-immunotherapy alters stereotactic ablative radiotherapy-induced systemic T cell responses in early-stage NSCLC.

Liu C, Chen Y, Li X, Bai Z, Jiang M, Sheng D Cancer Immunol Immunother. 2025; 74(3):80.

PMID: 39891774 PMC: 11787101. DOI: 10.1007/s00262-024-03935-8.


Temporal profiling of human lymphoid tissues reveals coordinated defense against viral challenge.

Coates M, Richoz N, Tuong Z, Bowyer G, Lee C, Ferdinand J Nat Immunol. 2025; 26(2):215-229.

PMID: 39890933 PMC: 11785532. DOI: 10.1038/s41590-024-02064-9.


Obesity reshapes regulatory T cells in the visceral adipose tissue by disrupting cellular cholesterol homeostasis.

Elkins C, Ye C, Sivasami P, Mulpur R, Diaz-Saldana P, Peng A Sci Immunol. 2025; 10(103):eadl4909.

PMID: 39792637 PMC: 11786953. DOI: 10.1126/sciimmunol.adl4909.


Low-avidity T cells drive endogenous tumor immunity in mice and humans.

Singhaviranon S, Dempsey J, Hagymasi A, Mandoiu I, Srivastava P Nat Immunol. 2025; 26(2):240-251.

PMID: 39789375 PMC: 11785530. DOI: 10.1038/s41590-024-02044-z.


sc-SPLASH provides ultra-efficient reference-free discovery in barcoded single-cell sequencing.

Dehghannasiri R, Kokot M, Starr A, Maziarz J, Gordon T, Tan S bioRxiv. 2025; .

PMID: 39763839 PMC: 11703226. DOI: 10.1101/2024.12.24.630263.


References
1.
Schober K, Voit F, Grassmann S, Muller T, Eggert J, Jarosch S . Reverse TCR repertoire evolution toward dominant low-affinity clones during chronic CMV infection. Nat Immunol. 2020; 21(4):434-441. DOI: 10.1038/s41590-020-0628-2. View

2.
Stubbington M, Lonnberg T, Proserpio V, Clare S, Speak A, Dougan G . T cell fate and clonality inference from single-cell transcriptomes. Nat Methods. 2016; 13(4):329-332. PMC: 4835021. DOI: 10.1038/nmeth.3800. View

3.
Finotello F, Rieder D, Hackl H, Trajanoski Z . Next-generation computational tools for interrogating cancer immunity. Nat Rev Genet. 2019; 20(12):724-746. DOI: 10.1038/s41576-019-0166-7. View

4.
Valpione S, Galvani E, Tweedy J, Mundra P, Banyard A, Middlehurst P . Immune-awakening revealed by peripheral T cell dynamics after one cycle of immunotherapy. Nat Cancer. 2020; 1(2):210-221. PMC: 7046489. DOI: 10.1038/s43018-019-0022-x. View

5.
Wolf F, Angerer P, Theis F . SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018; 19(1):15. PMC: 5802054. DOI: 10.1186/s13059-017-1382-0. View