» Articles » PMID: 32603655

Selective Neuronal Vulnerability in Alzheimer's Disease: A Network-Based Analysis

Abstract

A major obstacle to treating Alzheimer's disease (AD) is our lack of understanding of the molecular mechanisms underlying selective neuronal vulnerability, a key characteristic of the disease. Here, we present a framework integrating high-quality neuron-type-specific molecular profiles across the lifetime of the healthy mouse, which we generated using bacTRAP, with postmortem human functional genomics and quantitative genetics data. We demonstrate human-mouse conservation of cellular taxonomy at the molecular level for neurons vulnerable and resistant in AD, identify specific genes and pathways associated with AD neuropathology, and pinpoint a specific functional gene module underlying selective vulnerability, enriched in processes associated with axonal remodeling, and affected by amyloid accumulation and aging. We have made all cell-type-specific profiles and functional networks available at http://alz.princeton.edu. Overall, our study provides a molecular framework for understanding the complex interplay between Aβ, aging, and neurodegeneration within the most vulnerable neurons in AD.

Citing Articles

Translatome analysis reveals cellular network in DLK-dependent hippocampal glutamatergic neuron degeneration.

Ritchie E, Acar D, Zhong S, Pu Q, Li Y, Zheng B Elife. 2025; 13.

PMID: 40067879 PMC: 11896613. DOI: 10.7554/eLife.101173.


Improving vulnerable Calbindin1 neurons in the ventral hippocampus rescues tau-induced impairment of episodic memory.

Lei H, Lv J, Zhang F, Wei L, Shi K, Liu J Transl Neurodegener. 2025; 14(1):12.

PMID: 40038800 PMC: 11877784. DOI: 10.1186/s40035-025-00473-w.


Lower expression of neuronal isoform in vulnerable excitatory neurons increases risk in Alzheimer's disease.

Ranganathan R, Li S, Sapozhnikov G, Wang S, Song Y J Alzheimers Dis Rep. 2025; 9:25424823241296018.

PMID: 40034505 PMC: 11864243. DOI: 10.1177/25424823241296018.


Molecular hallmarks of excitatory and inhibitory neuronal resilience and resistance to Alzheimer's disease.

Castanho I, Yeganeh P, Boix C, Morgan S, Mathys H, Prokopenko D bioRxiv. 2025; .

PMID: 39868232 PMC: 11761133. DOI: 10.1101/2025.01.13.632801.


Multimodal gradients of basal forebrain connectivity across the neocortex.

Chakraborty S, Haast R, Onuska K, Kanel P, Prado M, Prado V Nat Commun. 2024; 15(1):8990.

PMID: 39420185 PMC: 11487139. DOI: 10.1038/s41467-024-53148-x.


References
1.
Liu M, Pleasure S, Collins A, Noebels J, Naya F, Tsai M . Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc Natl Acad Sci U S A. 2000; 97(2):865-70. PMC: 15422. DOI: 10.1073/pnas.97.2.865. View

2.
Vossel K, Beagle A, Rabinovici G, Shu H, Lee S, Naasan G . Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol. 2013; 70(9):1158-66. PMC: 4013391. DOI: 10.1001/jamaneurol.2013.136. View

3.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View

4.
Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R . Missing value estimation methods for DNA microarrays. Bioinformatics. 2001; 17(6):520-5. DOI: 10.1093/bioinformatics/17.6.520. View

5.
Hamilton R . Lewy bodies in Alzheimer's disease: a neuropathological review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol. 2000; 10(3):378-84. PMC: 8098522. DOI: 10.1111/j.1750-3639.2000.tb00269.x. View