» Articles » PMID: 32596832

An α2,3-Sialyltransferase from Photobacterium Phosphoreum with Broad Substrate Scope: Controlling Hydrolytic Activity by Directed Evolution

Overview
Journal Chemistry
Specialty Chemistry
Date 2020 Jun 30
PMID 32596832
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Defined sialoglycoconjugates are important molecular probes for studying the role of sialylated glycans in biological systems. We show that the α2,3-sialyltransferase from Photobacterium phosphoreum JT-ISH-467 (2,3SiaT ) tolerates a very broad substrate scope for modifications in the sialic acid part, including bulky amide variation, C5/C9 substitution, and C5 stereoinversion. To reduce the enzyme's hydrolytic activity, which erodes the product yield, an extensive structure-guided mutagenesis study identified three variants that show up to five times higher catalytic efficiency for sialyltransfer, up to ten times lower efficiency for substrate hydrolysis, and drastically reduced product hydrolysis. Variant 2,3SiaT (A151D) displayed the best performance overall in the synthesis of the GM3 trisaccharide (α2,3-Neu5Ac-Lac) from lactose in a one-pot, two-enzyme cascade. Our study demonstrates that several complementary solutions can be found to suppress the common problem of undesired hydrolysis activity of microbial GT80 sialyltransferases. The new enzymes are powerful catalysts for the synthesis of a wide variety of complex natural and new-to-nature sialoconjugates for biological studies.

Citing Articles

Enzyme-Sialylation-Controlled Chemical Sulfation of Glycan Epitopes for Decoding the Binding of Siglec Ligands.

Ma S, Zhang P, Ye J, Tian Y, Tian X, Jung J J Am Chem Soc. 2024; 146(43):29469-29480.

PMID: 39417319 PMC: 11673104. DOI: 10.1021/jacs.4c08817.


Kinetic characterization of two neuraminic acid synthases and evaluation of their application potential.

Cakar M, Milcic N, Andreadaki T, Charnock S, Fessner W, Findrik Blazevic Z Appl Microbiol Biotechnol. 2024; 108(1):446.

PMID: 39167161 PMC: 11339185. DOI: 10.1007/s00253-024-13277-1.


Construction of an chassis for efficient biosynthesis of human-like -linked glycoproteins.

Bao Z, Gao Y, Song Y, Ding N, Li W, Wu Q Front Bioeng Biotechnol. 2024; 12:1370685.

PMID: 38572355 PMC: 10987854. DOI: 10.3389/fbioe.2024.1370685.


Modular bioengineering of whole-cell catalysis for sialo-oligosaccharide production: coordinated co-expression of CMP-sialic acid synthetase and sialyltransferase.

Schelch S, Eibinger M, Zuson J, Kuballa J, Nidetzky B Microb Cell Fact. 2023; 22(1):241.

PMID: 38012629 PMC: 10683312. DOI: 10.1186/s12934-023-02249-1.


Cellular and Molecular Engineering of Glycan Sialylation in Heterologous Systems.

Hombu R, Neelamegham S, Park S Molecules. 2021; 26(19).

PMID: 34641494 PMC: 8512710. DOI: 10.3390/molecules26195950.


References
1.
Schauer R . Achievements and challenges of sialic acid research. Glycoconj J. 2001; 17(7-9):485-99. PMC: 7087979. DOI: 10.1023/a:1011062223612. View

2.
Yamakawa N, Vanbeselaere J, Chang L, Yu S, Ducrocq L, Harduin-Lepers A . Systems glycomics of adult zebrafish identifies organ-specific sialylation and glycosylation patterns. Nat Commun. 2018; 9(1):4647. PMC: 6220181. DOI: 10.1038/s41467-018-06950-3. View

3.
Both P, Riese M, Gray C, Huang K, Pallister E, Kosov I . Applications of a highly α2,6-selective pseudosialidase. Glycobiology. 2018; 28(5):261-268. DOI: 10.1093/glycob/cwy016. View

4.
Yamamoto T . Marine bacterial sialyltransferases. Mar Drugs. 2010; 8(11):2781-94. PMC: 2996176. DOI: 10.3390/md8112781. View

5.
Talafova K, Hrabarova E, Nahalka J . A semi-multifunctional sialyltransferase from Bibersteinia trehalosi and its comparison to the Pasteurella multocida ST1 mutants. J Biotechnol. 2015; 216:116-24. DOI: 10.1016/j.jbiotec.2015.09.031. View