» Articles » PMID: 32522981

MTADA is a Framework for Identifying Risk Genes from De Novo Mutations in Multiple Traits

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Jun 12
PMID 32522981
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Joint analysis of multiple traits can result in the identification of associations not found through the analysis of each trait in isolation. Studies of neuropsychiatric disorders and congenital heart disease (CHD) which use de novo mutations (DNMs) from parent-offspring trios have reported multiple putatively causal genes. However, a joint analysis method designed to integrate DNMs from multiple studies has yet to be implemented. We here introduce multiple-trait TADA (mTADA) which jointly analyzes two traits using DNMs from non-overlapping family samples. We first demonstrate that mTADA is able to leverage genetic overlaps to increase the statistical power of risk-gene identification. We then apply mTADA to large datasets of >13,000 trios for five neuropsychiatric disorders and CHD. We report additional risk genes for schizophrenia, epileptic encephalopathies and CHD. We outline some shared and specific biological information of intellectual disability and CHD by conducting systems biology analyses of genes prioritized by mTADA.

Citing Articles

Statistical methods for assessing the effects of de novo variants on birth defects.

Xie Y, Wu R, Li H, Dong W, Zhou G, Zhao H Hum Genomics. 2024; 18(1):25.

PMID: 38486307 PMC: 10938830. DOI: 10.1186/s40246-024-00590-z.


VBASS enables integration of single cell gene expression data in Bayesian association analysis of rare variants.

Zhong G, Choi Y, Shen Y Commun Biol. 2023; 6(1):774.

PMID: 37491581 PMC: 10368729. DOI: 10.1038/s42003-023-05155-9.


DeepND: Deep multitask learning of gene risk for comorbid neurodevelopmental disorders.

Beyreli I, Karakahya O, Cicek A Patterns (N Y). 2022; 3(7):100524.

PMID: 35845835 PMC: 9278518. DOI: 10.1016/j.patter.2022.100524.


Network assisted analysis of de novo variants using protein-protein interaction information identified 46 candidate genes for congenital heart disease.

Xie Y, Jiang W, Dong W, Li H, Jin S, Brueckner M PLoS Genet. 2022; 18(6):e1010252.

PMID: 35671298 PMC: 9205499. DOI: 10.1371/journal.pgen.1010252.


Quantifying concordant genetic effects of de novo mutations on multiple disorders.

Guo H, Hou L, Shi Y, Jin S, Zeng X, Li B Elife. 2022; 11.

PMID: 35666111 PMC: 9217133. DOI: 10.7554/eLife.75551.


References
1.
Wang S, Mandell J, Kumar Y, Sun N, Morris M, Arbelaez J . De Novo Sequence and Copy Number Variants Are Strongly Associated with Tourette Disorder and Implicate Cell Polarity in Pathogenesis. Cell Rep. 2018; 24(13):3441-3454.e12. PMC: 6475626. DOI: 10.1016/j.celrep.2018.08.082. View

2.
Galesloot T, Van Steen K, Kiemeney L, Janss L, Vermeulen S . A comparison of multivariate genome-wide association methods. PLoS One. 2014; 9(4):e95923. PMC: 3999149. DOI: 10.1371/journal.pone.0095923. View

3.
Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S . Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004; 5(10):R80. PMC: 545600. DOI: 10.1186/gb-2004-5-10-r80. View

4.
De Rubeis S, He X, Goldberg A, Poultney C, Samocha K, Cicek A . Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014; 515(7526):209-15. PMC: 4402723. DOI: 10.1038/nature13772. View

5.
Genovese G, Fromer M, Stahl E, Ruderfer D, Chambert K, Landen M . Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci. 2016; 19(11):1433-1441. PMC: 5104192. DOI: 10.1038/nn.4402. View