» Articles » PMID: 32493979

Polyamine Regulation of Ion Channel Assembly and Implications for Nicotinic Acetylcholine Receptor Pharmacology

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Jun 5
PMID 32493979
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Small molecule polyamines are abundant in all life forms and participate in diverse aspects of cell growth and differentiation. Spermidine/spermine acetyltransferase (SAT1) is the rate-limiting enzyme in polyamine catabolism and a primary genetic risk factor for suicidality. Here, using genome-wide screening, we find that SAT1 selectively controls nicotinic acetylcholine receptor (nAChR) biogenesis. SAT1 specifically augments assembly of nAChRs containing α7 or α4β2, but not α6 subunits. Polyamines are classically studied as regulators of ion channel gating that engage the nAChR channel pore. In contrast, we find polyamine effects on assembly involve the nAChR cytosolic loop. Neurological studies link brain polyamines with neurodegenerative conditions. Our pharmacological and transgenic animal studies find that reducing polyamines enhances cortical neuron nAChR expression and augments nicotine-mediated neuroprotection. Taken together, we describe a most unexpected role for polyamines in regulating ion channel assembly, which provides a new avenue for nAChR neuropharmacology.

Citing Articles

Pathophysiology of Arginases in Cancer and Efforts in Their Pharmacological Inhibition.

Marzeta-Assas P, Jacenik D, Zaslona Z Int J Mol Sci. 2024; 25(18).

PMID: 39337272 PMC: 11431790. DOI: 10.3390/ijms25189782.


The telencephalon is a neuronal substrate for systemic inflammatory responses in teleosts via polyamine metabolism.

Mani A, Haddad F, Barreda D, Salinas I Proc Natl Acad Sci U S A. 2024; 121(39):e2404781121.

PMID: 39284055 PMC: 11441480. DOI: 10.1073/pnas.2404781121.


Salmonella Typhimurium exploits host polyamines for assembly of the type 3 secretion machinery.

Miki T, Uemura T, Kinoshita M, Ami Y, Ito M, Okada N PLoS Biol. 2024; 22(8):e3002731.

PMID: 39102375 PMC: 11299824. DOI: 10.1371/journal.pbio.3002731.


Unveiling the hidden players: noncoding RNAs orchestrating polyamine metabolism in disease.

Rossi M, Fiorucci C, Mariottini P, Cervelli M Cell Biosci. 2024; 14(1):84.

PMID: 38918813 PMC: 11202255. DOI: 10.1186/s13578-024-01235-3.


Neuronal nicotinic acetylcholine receptor antibodies in autoimmune central nervous system disorders.

Pechlivanidou M, Vakrakou A, Karagiorgou K, Tuzun E, Karachaliou E, Chroni E Front Immunol. 2024; 15:1388998.

PMID: 38863705 PMC: 11165060. DOI: 10.3389/fimmu.2024.1388998.


References
1.
Role L, Berg D . Nicotinic receptors in the development and modulation of CNS synapses. Neuron. 1996; 16(6):1077-85. DOI: 10.1016/s0896-6273(00)80134-8. View

2.
Gotti C, Clementi F . Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 2005; 74(6):363-96. DOI: 10.1016/j.pneurobio.2004.09.006. View

3.
Lindstrom J . Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol. 1997; 15(2):193-222. DOI: 10.1007/BF02740634. View

4.
Le Novere N, Corringer P, Changeux J . The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol. 2002; 53(4):447-56. DOI: 10.1002/neu.10153. View

5.
Picciotto M . Nicotine as a modulator of behavior: beyond the inverted U. Trends Pharmacol Sci. 2003; 24(9):493-9. DOI: 10.1016/S0165-6147(03)00230-X. View