» Articles » PMID: 32490436

Diffeomorphic Lung Registration Using Deep CNNs and Reinforced Learning

Overview
Publisher Springer
Date 2020 Jun 4
PMID 32490436
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Image registration is a well-known problem in the field of medical imaging. In this paper, we focus on the registration of chest inspiratory and expiratory computed tomography (CT) scans from the same patient. Our method recovers the diffeomorphic elastic displacement vector field (DVF) by jointly regressing the direct and the inverse transformation. Our architecture is based on the RegNet network but we implement a reinforced learning strategy that can accommodate a large training dataset. Our results show that our method performs with a lower estimation error for the same number of epochs than the RegNet approach.

Citing Articles

Artificial general intelligence for radiation oncology.

Liu C, Liu Z, Holmes J, Zhang L, Zhang L, Ding Y Meta Radiol. 2024; 1(3).

PMID: 38344271 PMC: 10857824. DOI: 10.1016/j.metrad.2023.100045.


A review of deep learning-based deformable medical image registration.

Zou J, Gao B, Song Y, Qin J Front Oncol. 2022; 12:1047215.

PMID: 36568171 PMC: 9768226. DOI: 10.3389/fonc.2022.1047215.


Artificial Intelligence in Radiation Therapy.

Fu Y, Zhang H, Morris E, Glide-Hurst C, Pai S, Traverso A IEEE Trans Radiat Plasma Med Sci. 2022; 6(2):158-181.

PMID: 35992632 PMC: 9385128. DOI: 10.1109/TRPMS.2021.3107454.


CNN-based Deformable Registration Facilitates Fast and Accurate Air Trapping Measurements at Inspiratory and Expiratory CT.

Hasenstab K, Tabalon J, Yuan N, Retson T, Hsiao A Radiol Artif Intell. 2022; 4(1):e210211.

PMID: 35146437 PMC: 8823452. DOI: 10.1148/ryai.2021210211.


Artificial intelligence in functional imaging of the lung.

San Jose Estepar R Br J Radiol. 2021; 95(1132):20210527.

PMID: 34890215 PMC: 9153712. DOI: 10.1259/bjr.20210527.


References
1.
Ross J, San Jose Estepar R, Diaz A, Westin C, Kikinis R, Silverman E . Lung extraction, lobe segmentation and hierarchical region assessment for quantitative analysis on high resolution computed tomography images. Med Image Comput Comput Assist Interv. 2010; 12(Pt 2):690-8. PMC: 3061233. DOI: 10.1007/978-3-642-04271-3_84. View

2.
Rueckert D, Sonoda L, Hayes C, Hill D, Leach M, Hawkes D . Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999; 18(8):712-21. DOI: 10.1109/42.796284. View

3.
Murphy K, van Ginneken B, Reinhardt J, Kabus S, Ding K, Deng X . Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge. IEEE Trans Med Imaging. 2011; 30(11):1901-20. DOI: 10.1109/TMI.2011.2158349. View

4.
Castillo R, Castillo E, Fuentes D, Ahmad M, Wood A, Ludwig M . A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive. Phys Med Biol. 2013; 58(9):2861-77. PMC: 3677192. DOI: 10.1088/0031-9155/58/9/2861. View

5.
Litjens G, Kooi T, Bejnordi B, Setio A, Ciompi F, Ghafoorian M . A survey on deep learning in medical image analysis. Med Image Anal. 2017; 42:60-88. DOI: 10.1016/j.media.2017.07.005. View