» Articles » PMID: 32484345

Cooperation of Hot Holes and Surface Adsorbates in Plasmon-Driven Anisotropic Growth of Gold Nanostars

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2020 Jun 3
PMID 32484345
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Light-driven synthesis of plasmonic metal nanostructures has garnered broad scientific interests. Although it has been widely accepted that surface plasmon resonance (SPR)-generated energetic electrons play an essential role in this photochemical process, the exact function of plasmon-generated hot holes in regulating the morphology of nanostructures has not been fully explored. Herein, we discover that those hot holes work with surface adsorbates collectively to control the anisotropic growth of gold (Au) nanostructures. Specifically, it is found that hot holes stabilized by surface adsorbed iodide enable the site-selective oxidative etching of Au, which leads to nonuniform growths along different lateral directions to form six-pointed Au nanostars. Our studies establish a molecular-level understanding of the mechanism behind the plasmon-driven synthesis of Au nanostars and illustrate the importance of cooperation between charge carriers and surface adsorbates in regulating the morphology evolution of plasmonic nanostructures.

Citing Articles

Promoting plasmonic photocatalysis with ligand-induced charge separation under interband excitation.

Roche B, Vo T, Chang W Chem Sci. 2023; 14(32):8598-8606.

PMID: 37592991 PMC: 10430595. DOI: 10.1039/d3sc02167j.


Combination of Plasmon-Mediated Photochemistry and Seed-Mediated Methods for Synthesis of Bicomponent Nanocrystals.

Cheng H, Huang M, Hsu S ACS Omega. 2022; 7(34):30622-30631.

PMID: 36061648 PMC: 9434765. DOI: 10.1021/acsomega.2c04349.


Facile Synthesis of Porous Ag Crystals as SERS Sensor for Detection of Five Methamphetamine Analogs.

Qin Y, Mo F, Yao S, Wu Y, He Y, Yao W Molecules. 2022; 27(12).

PMID: 35745060 PMC: 9227489. DOI: 10.3390/molecules27123939.


Identification of plasmon-driven nanoparticle-coalescence-dominated growth of gold nanoplates through nanopore sensing.

Huang B, Miao L, Li J, Xie Z, Wang Y, Chai J Nat Commun. 2022; 13(1):1402.

PMID: 35301326 PMC: 8931024. DOI: 10.1038/s41467-022-29123-9.


Local Growth Mediated by Plasmonic Hot Carriers: Chirality from Achiral Nanocrystals Using Circularly Polarized Light.

Besteiro L, Movsesyan A, Avalos-Ovando O, Lee S, Cortes E, Correa-Duarte M Nano Lett. 2021; 21(24):10315-10324.

PMID: 34860527 PMC: 8704195. DOI: 10.1021/acs.nanolett.1c03503.


References
1.
Almora-Barrios N, Novell-Leruth G, Whiting P, Liz-Marzan L, Lopez N . Theoretical description of the role of halides, silver, and surfactants on the structure of gold nanorods. Nano Lett. 2014; 14(2):871-5. DOI: 10.1021/nl404661u. View

2.
Fujiwara H, Suzuki T, Pin C, Sasaki K . Localized ZnO Growth on a Gold Nanoantenna by Plasmon-Assisted Hydrothermal Synthesis. Nano Lett. 2019; 20(1):389-394. DOI: 10.1021/acs.nanolett.9b04073. View

3.
Golze S, Hughes R, Rouvimov S, Neal R, Demille T, Neretina S . Plasmon-Mediated Synthesis of Periodic Arrays of Gold Nanoplates Using Substrate-Immobilized Seeds Lined with Planar Defects. Nano Lett. 2019; 19(8):5653-5660. DOI: 10.1021/acs.nanolett.9b02215. View

4.
Zou N, Chen G, Mao X, Shen H, Choudhary E, Zhou X . Imaging Catalytic Hotspots on Single Plasmonic Nanostructures via Correlated Super-Resolution and Electron Microscopy. ACS Nano. 2018; 12(6):5570-5579. DOI: 10.1021/acsnano.8b01338. View

5.
Gratzel M . Photoelectrochemical cells. Nature. 2001; 414(6861):338-44. DOI: 10.1038/35104607. View