» Articles » PMID: 32467228

Quantifying the Strength of Heterointeractions Among Receptor Tyrosine Kinases from Different Subfamilies: Implications for Cell Signaling

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2020 May 30
PMID 32467228
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that control vital cell processes such as cell growth, survival, and differentiation. There is a growing body of evidence that RTKs from different subfamilies can interact and that these diverse interactions can have important biological consequences. However, these heterointeractions are often ignored, and their strengths are unknown. In this work, we studied the heterointeractions of nine RTK pairs, epidermal growth factor receptor (EGFR)-EPH receptor A2 (EPHA2), EGFR-vascular endothelial growth factor receptor 2 (VEGFR2), EPHA2-VEGFR2, EPHA2-fibroblast growth factor receptor 1 (FGFR1), EPHA2-FGFR2, EPHA2-FGFR3, VEGFR2-FGFR1, VEGFR2-FGFR2, and VEGFR2-FGFR3, using a FRET-based method. Surprisingly, we found that RTK heterodimerization and homodimerization strengths can be similar, underscoring the significance of RTK heterointeractions in signaling. We discuss how these heterointeractions can contribute to the complexity of RTK signal transduction, and we highlight the utility of quantitative FRET for probing multiple interactions in the plasma membrane.

Citing Articles

Phosphatidylinositol 4,5-bisphosphate drives the formation of EGFR and EphA2 complexes.

Kumar Singh P, Rybak J, Schuck R, Sahoo A, Buck M, Barrera F Sci Adv. 2024; 10(49):eadl0649.

PMID: 39630914 PMC: 11616708. DOI: 10.1126/sciadv.adl0649.


Targeting the EphA2 pathway: could it be the way for bone sarcomas?.

Giordano G, Tucciarello C, Merlini A, Cutrupi S, Pignochino Y Cell Commun Signal. 2024; 22(1):433.

PMID: 39252029 PMC: 11382444. DOI: 10.1186/s12964-024-01811-7.


Transmembrane helix interactions regulate oligomerization of the receptor tyrosine kinase EphA2.

Wirth D, Ozdemir E, Wimley W, Pasquale E, Hristova K J Biol Chem. 2024; 300(7):107441.

PMID: 38838777 PMC: 11263659. DOI: 10.1016/j.jbc.2024.107441.


Ligand bias underlies differential signaling of multiple FGFs via FGFR1.

Karl K, Del Piccolo N, Light T, Roy T, Dudeja P, Ursachi V Elife. 2024; 12.

PMID: 38568193 PMC: 10990489. DOI: 10.7554/eLife.88144.


Eph receptors and ephrins in cancer progression.

Pasquale E Nat Rev Cancer. 2023; 24(1):5-27.

PMID: 37996538 PMC: 11015936. DOI: 10.1038/s41568-023-00634-x.


References
1.
Arteaga C, Engelman J . ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014; 25(3):282-303. PMC: 4018830. DOI: 10.1016/j.ccr.2014.02.025. View

2.
Cheng C, Haasdijk R, Tempel D, den Dekker W, Chrifi I, Blonden L . PDGF-induced migration of vascular smooth muscle cells is inhibited by heme oxygenase-1 via VEGFR2 upregulation and subsequent assembly of inactive VEGFR2/PDGFRβ heterodimers. Arterioscler Thromb Vasc Biol. 2012; 32(5):1289-98. DOI: 10.1161/ATVBAHA.112.245530. View

3.
Sarabipour S, Ballmer-Hofer K, Hristova K . VEGFR-2 conformational switch in response to ligand binding. Elife. 2016; 5:e13876. PMC: 4829425. DOI: 10.7554/eLife.13876. View

4.
Schlessinger J . Signal transduction. Autoinhibition control. Science. 2003; 300(5620):750-2. DOI: 10.1126/science.1082024. View

5.
King C, Stoneman M, Raicu V, Hristova K . Fully quantified spectral imaging reveals in vivo membrane protein interactions. Integr Biol (Camb). 2016; 8(2):216-29. PMC: 4755892. DOI: 10.1039/c5ib00202h. View