» Articles » PMID: 32466220

Streptavidin-Hosted Organocatalytic Aldol Addition

Overview
Journal Molecules
Publisher MDPI
Specialty Biology
Date 2020 May 30
PMID 32466220
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

In this report, the streptavidin-biotin technology was applied to enable organocatalytic aldol addition. By attaching pyrrolidine to the valeric motif of biotin and introducing it to streptavidin (Sav), a protein-based organocatalytic system was created, and the aldol addition of acetone with -nitrobenzaldehyde was tested. The conversion of substrate to product can be as high as 93%. Although the observed enantioselectivity was only moderate (33:67 er), further protein engineering efforts can be included to improve the selectivity. These results have proven the concept that Sav can be used to host stereoselective aldol addition.

Citing Articles

Secondary Amine Catalysis in Enzyme Design: Broadening Protein Template Diversity through Genetic Code Expansion.

Williams T, Taily I, Hatton L, Berezin A, Wu Y, Moliner V Angew Chem Int Ed Engl. 2024; 63(22):e202403098.

PMID: 38545954 PMC: 11497281. DOI: 10.1002/anie.202403098.


An artificial nickel chlorinase based on the biotin-streptavidin technology.

Yu K, Zhang K, Jakob R, Maier T, Ward T Chem Commun (Camb). 2024; 60(14):1944-1947.

PMID: 38277163 PMC: 10863421. DOI: 10.1039/d3cc05847f.


Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C()-H Bonds.

Yu K, Zou Z, Igareta N, Tachibana R, Bechter J, Kohler V J Am Chem Soc. 2023; 145(30):16621-16629.

PMID: 37471698 PMC: 10401721. DOI: 10.1021/jacs.3c03969.


Going Full Circle with Organocatalysis and Biocatalysis: The Latent Potential of Cofactor Mimics in Asymmetric Synthesis.

Murray J, Hodgson D, ODonoghue A J Org Chem. 2023; 88(12):7619-7629.

PMID: 37126859 PMC: 10278144. DOI: 10.1021/acs.joc.2c02747.


An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp C-H Functionalization via Intramolecular Carbene Insertion.

Rumo C, Stein A, Klehr J, Tachibana R, Prescimone A, Haussinger D J Am Chem Soc. 2022; 144(26):11676-11684.

PMID: 35749305 PMC: 9348757. DOI: 10.1021/jacs.2c03311.


References
1.
Rahimi M, Geertsema E, Miao Y, van der Meer J, van den Bosch T, de Haan P . Inter- and intramolecular aldol reactions promiscuously catalyzed by a proline-based tautomerase. Org Biomol Chem. 2017; 15(13):2809-2816. DOI: 10.1039/c7ob00302a. View

2.
Hosseini M, Stiasni N, Barbieri V, Kappe C . Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling. J Org Chem. 2007; 72(4):1417-24. DOI: 10.1021/jo0624187. View

3.
Donslund B, Johansen T, Poulsen P, Soholm Halskov K, Anker Jorgensen K . The Diarylprolinol Silyl Ethers: Ten Years After. Angew Chem Int Ed Engl. 2015; 54(47):13860-74. DOI: 10.1002/anie.201503920. View

4.
Saifuddin M, Guo C, Biewenga L, Saravanan T, Charnock S, Poelarends G . Enantioselective Aldol Addition of Acetaldehyde to Aromatic Aldehydes Catalyzed by Proline-Based Carboligases. ACS Catal. 2020; 10(4):2522-2527. PMC: 7045556. DOI: 10.1021/acscatal.0c00039. View

5.
Nodling A, Santi N, Williams T, Tsai Y, Luk L . Enabling protein-hosted organocatalytic transformations. RSC Adv. 2020; 10(27):16147-16161. PMC: 7654312. DOI: 10.1039/d0ra01526a. View