» Articles » PMID: 32448179

Biosynthesis of Aromatic Polyketides in Microorganisms Using Type II Polyketide Synthases

Overview
Publisher Biomed Central
Date 2020 May 26
PMID 32448179
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Aromatic polyketides have attractive biological activities and pharmacological properties. Different from other polyketides, aromatic polyketides are characterized by their polycyclic aromatic structure. The biosynthesis of aromatic polyketides is usually accomplished by the type II polyketide synthases (PKSs), which produce highly diverse polyketide chains by sequential condensation of the starter units with extender units, followed by reduction, cyclization, aromatization and tailoring reactions. Recently, significant progress has been made in characterization and engineering of type II PKSs to produce novel products and improve product titers. In this review, we briefly summarize the architectural organizations and genetic contributions of PKS genes to provide insight into the biosynthetic process. We then review the most recent progress in engineered biosynthesis of aromatic polyketides, with emphasis on generating novel molecular structures. We also discuss the current challenges and future perspectives in the rational engineering of type II PKSs for large scale production of aromatic polyketides.

Citing Articles

Advanced Technologies for Large Scale Supply of Marine Drugs.

Martinez H, Santos M, Pedraza L, Testera A Mar Drugs. 2025; 23(2).

PMID: 39997193 PMC: 11857447. DOI: 10.3390/md23020069.


Xanthomonas citri subsp. citri requires a polyketide cyclase to activate the type III secretion system for virulence.

Zhu S, Wu S, Liu Y, Zhang Z, Zou H BMC Microbiol. 2025; 25(1):59.

PMID: 39893476 PMC: 11786466. DOI: 10.1186/s12866-025-03749-3.


Serendipitous Discovery of Dearomatized Dimers in Anthracene Derivative Oxidation.

Fan X, Chen H, Tian B, Wen Y, Zhang Q Org Lett. 2025; 27(3):767-771.

PMID: 39807840 PMC: 11773568. DOI: 10.1021/acs.orglett.4c04417.


Analysis of the Setomimycin Biosynthetic Gene Cluster from JCM3382 and Evaluation of Its α-Glucosidase Inhibitory Activity Using Molecular Docking and Molecular Dynamics Simulations.

Hyun K, Liang X, Xu Y, Kim S, Boo K, Park J Int J Mol Sci. 2024; 25(19).

PMID: 39409089 PMC: 11476836. DOI: 10.3390/ijms251910758.


Genomic insights into an endophytic sp. VITGV156 for antimicrobial compounds.

Veilumuthu P, Nagarajan T, Magar S, Sundaresan S, Moses L, Theodore T Front Microbiol. 2024; 15:1407289.

PMID: 38887720 PMC: 11180775. DOI: 10.3389/fmicb.2024.1407289.


References
1.
Zaleta-Rivera K, Charkoudian L, Ridley C, Khosla C . Cloning, sequencing, heterologous expression, and mechanistic analysis of A-74528 biosynthesis. J Am Chem Soc. 2010; 132(26):9122-8. PMC: 2896501. DOI: 10.1021/ja102519v. View

2.
Morita H, Wong C, Abe I . How structural subtleties lead to molecular diversity for the type III polyketide synthases. J Biol Chem. 2019; 294(41):15121-15136. PMC: 6791334. DOI: 10.1074/jbc.REV119.006129. View

3.
Wang B, Ren J, Li L, Guo F, Pan G, Ai G . Kinamycin biosynthesis employs a conserved pair of oxidases for B-ring contraction. Chem Commun (Camb). 2015; 51(42):8845-8. DOI: 10.1039/c5cc01986a. View

4.
Iorio M, Cruz J, Simone M, Bernasconi A, Brunati C, Sosio M . Antibacterial Paramagnetic Quinones from Actinoallomurus. J Nat Prod. 2017; 80(4):819-827. DOI: 10.1021/acs.jnatprod.6b00654. View

5.
Daum M, Peintner I, Linnenbrink A, Frerich A, Weber M, Paululat T . Organisation of the biosynthetic gene cluster and tailoring enzymes in the biosynthesis of the tetracyclic quinone glycoside antibiotic polyketomycin. Chembiochem. 2009; 10(6):1073-83. DOI: 10.1002/cbic.200800823. View