» Articles » PMID: 32442316

Transposable Elements Employ Distinct Integration Strategies with Respect to Transcriptional Landscapes in Eukaryotic Genomes

Overview
Specialty Biochemistry
Date 2020 May 23
PMID 32442316
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Transposable elements (TEs) are ubiquitous DNA segments capable of moving from one site to another within host genomes. The extant distributions of TEs in eukaryotic genomes have been shaped by both bona fide TE integration preferences in eukaryotic genomes and by selection following integration. Here, we compare TE target site distribution in host genomes using multiple de novo transposon insertion datasets in both plants and animals and compare them in the context of genome-wide transcriptional landscapes. We showcase two distinct types of transcription-associated TE targeting strategies that suggest a process of convergent evolution among eukaryotic TE families. The integration of two precision-targeting elements are specifically associated with initiation of RNA Polymerase II transcription of highly expressed genes, suggesting the existence of novel mechanisms of precision TE targeting in addition to passive targeting of open chromatin. We also highlight two features that can facilitate TE survival and rapid proliferation: tissue-specific transposition and minimization of negative impacts on nearby gene function due to precision targeting.

Citing Articles

Ultra-deep sequencing of somatic mutations induced by a maize transposon.

Scherer J, Hinczewski M, Nelms B bioRxiv. 2025; .

PMID: 39896451 PMC: 11785109. DOI: 10.1101/2025.01.22.634239.


Genomic Analysis Reveals Novel Genes and Adaptive Mechanisms for Artificial Diet Utilization in the Silkworm Strain Guican No.5.

Xin L, Guan D, Wei N, Zhang X, Deng W, Li X Insects. 2025; 15(12.

PMID: 39769612 PMC: 11677031. DOI: 10.3390/insects15121010.


Expanding the BonnMu sequence-indexed repository of transposon induced maize (Zea mays L.) mutations in dent and flint germplasm.

Win Y, Stocker T, Du X, Brox A, Pitz M, Klaus A Plant J. 2024; 120(5):2253-2268.

PMID: 39453608 PMC: 11629751. DOI: 10.1111/tpj.17088.


Comprehensive analysis of the expression patterns and function of the axis in yak tissues and muscle satellite cells.

Ma Z, Chai Z, Yang H, Zhang X, Zhao H, Luo X Front Vet Sci. 2024; 11:1448587.

PMID: 39301283 PMC: 11410761. DOI: 10.3389/fvets.2024.1448587.


Toward Transgene-Free Transposon-Mediated Biological Mutagenesis for Plant Breeding.

Kirov I Int J Mol Sci. 2023; 24(23).

PMID: 38069377 PMC: 10706983. DOI: 10.3390/ijms242317054.


References
1.
Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K . Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell. 2003; 15(8):1771-80. PMC: 167168. DOI: 10.1105/tpc.012559. View

2.
Baller J, Gao J, Stamenova R, Curcio M, Voytas D . A nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon. Genome Res. 2012; 22(4):704-13. PMC: 3317152. DOI: 10.1101/gr.129585.111. View

3.
Brookfield J . The ecology of the genome - mobile DNA elements and their hosts. Nat Rev Genet. 2005; 6(2):128-36. DOI: 10.1038/nrg1524. View

4.
Sultana T, Zamborlini A, Cristofari G, Lesage P . Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet. 2017; 18(5):292-308. DOI: 10.1038/nrg.2017.7. View

5.
McCarty D, Suzuki M, Hunter C, Collins J, Avigne W, Koch K . Genetic and molecular analyses of UniformMu transposon insertion lines. Methods Mol Biol. 2013; 1057:157-66. DOI: 10.1007/978-1-62703-568-2_11. View