» Articles » PMID: 32441815

Scalable, Two-stage, Autoinduction of Recombinant Protein Expression in E. Coli Utilizing Phosphate Depletion

Overview
Publisher Wiley
Specialty Biochemistry
Date 2020 May 23
PMID 32441815
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

We report the scalable production of recombinant proteins in Escherichia coli, reliant on tightly controlled autoinduction, triggered by phosphate depletion in the stationary phase. The method, reliant on engineered strains and plasmids, enables improved protein expression across scales. Expression levels using this approach have reached as high as 55% of the total cellular protein. The initial use of the method in instrumented fed-batch fermentations enables cell densities of ∼30 gCDW/L and protein titers up to 8.1 ± 0.7 g/L (∼270 mg/gCDW). The process has also been adapted to an optimized autoinduction media, enabling routine batch production at culture volumes of 20 μl (384-well plates), 100 μl (96-well plates), 20 ml, and 100 ml. In batch cultures, cell densities routinely reach ∼5-7 gCDW/L, offering protein titers above 2 g/L. The methodology has been validated with a set of diverse heterologous proteins and is of general use for the facile optimization of routine protein expression from high throughput screens to fed-batch fermentation.

Citing Articles

Engineering of bacteria towards programmed autolysis: why, how, and when?.

Dong C, Cui S, Ren J, Gong G, Zha J, Wu X Microb Cell Fact. 2024; 23(1):293.

PMID: 39465360 PMC: 11514776. DOI: 10.1186/s12934-024-02566-z.


Delaying production with prokaryotic inducible expression systems.

De Baets J, De Paepe B, De Mey M Microb Cell Fact. 2024; 23(1):249.

PMID: 39272067 PMC: 11401332. DOI: 10.1186/s12934-024-02523-w.


Scalable, robust, high-throughput expression & purification of nanobodies enabled by 2-stage dynamic control.

Hennigan J, Menacho-Melgar R, Sarkar P, Golovsky M, Lynch M Metab Eng. 2024; 85:116-130.

PMID: 39059674 PMC: 11408108. DOI: 10.1016/j.ymben.2024.07.012.


Expression of soluble moloney murine leukemia virus-reverse transcriptase in Escherichia coli BL21 star (DE3) using autoinduction system.

Handayani C, Laksmi F, Andriani A, Nuryana I, Mubarik N, Agustriana E Mol Biol Rep. 2024; 51(1):628.

PMID: 38717629 DOI: 10.1007/s11033-024-09583-6.


2-Stage microfermentations.

Li S, Ye Z, Moreb E, Menacho-Melgar R, Golovsky M, Lynch M Metab Eng Commun. 2024; 18:e00233.

PMID: 38665924 PMC: 11043886. DOI: 10.1016/j.mec.2024.e00233.


References
1.
Oakley A . Glutathione transferases: a structural perspective. Drug Metab Rev. 2011; 43(2):138-51. DOI: 10.3109/03602532.2011.558093. View

2.
An J, Kim Y . A gene cluster encoding malonyl-CoA decarboxylase (MatA), malonyl-CoA synthetase (MatB) and a putative dicarboxylate carrier protein (MatC) in Rhizobium trifolii--cloning, sequencing, and expression of the enzymes in Escherichia coli. Eur J Biochem. 1998; 257(2):395-402. DOI: 10.1046/j.1432-1327.1998.2570395.x. View

3.
Running J, Bansal K . Oxygen transfer rates in shaken culture vessels from Fernbach flasks to microtiter plates. Biotechnol Bioeng. 2016; 113(8):1729-35. DOI: 10.1002/bit.25938. View

4.
Berrow N, Bussow K, Coutard B, Diprose J, Ekberg M, Folkers G . Recombinant protein expression and solubility screening in Escherichia coli: a comparative study. Acta Crystallogr D Biol Crystallogr. 2006; 62(Pt 10):1218-26. DOI: 10.1107/S0907444906031337. View

5.
Song H, Jiang J, Wang X, Zhang J . High purity recombinant human growth hormone (rhGH) expression in Escherichia coli under phoA promoter. Bioengineered. 2016; 8(2):147-153. PMC: 5398570. DOI: 10.1080/21655979.2016.1212137. View