» Articles » PMID: 32437685

Lattice Light-Sheet Microscopy Multi-dimensional Analyses (LaMDA) of T-Cell Receptor Dynamics Predict T-Cell Signaling States

Overview
Journal Cell Syst
Publisher Cell Press
Date 2020 May 22
PMID 32437685
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Lattice light-sheet microscopy provides large amounts of high-dimensional, high-spatiotemporal resolution imaging data of cell surface receptors across the 3D surface of live cells, but user-friendly analysis pipelines are lacking. Here, we introduce lattice light-sheet microscopy multi-dimensional analyses (LaMDA), an end-to-end pipeline comprised of publicly available software packages that combines machine learning, dimensionality reduction, and diffusion maps to analyze surface receptor dynamics and classify cellular signaling states without the need for complex biochemical measurements or other prior information. We use LaMDA to analyze images of T-cell receptor (TCR) microclusters on the surface of live primary T cells under resting and stimulated conditions. We observe global spatial and temporal changes of TCRs across the 3D cell surface, accurately differentiate stimulated cells from unstimulated cells, precisely predict attenuated T-cell signaling after CD4 and CD28 receptor blockades, and reliably discriminate between structurally similar TCR ligands. All instructions needed to implement LaMDA are included in this paper.

Citing Articles

Frontiers in artificial intelligence-directed light-sheet microscopy for uncovering biological phenomena and multi-organ imaging.

Zhu E, Li Y, Margolis S, Wang J, Wang K, Zhang Y View (Beijing). 2024; 5(5).

PMID: 39478956 PMC: 11521201. DOI: 10.1002/VIW.20230087.


Applications of Lightsheet Fluorescence Microscopy by High Numerical Aperture Detection Lens.

Shih C, Tang W, Chen P, Chen B J Phys Chem B. 2024; 128(35):8273-8289.

PMID: 39177503 PMC: 11382282. DOI: 10.1021/acs.jpcb.4c01721.


Cell dynamics revealed by microscopy advances.

Hockenberry M, Daugird T, Legant W Curr Opin Cell Biol. 2024; 90:102418.

PMID: 39159598 PMC: 11392612. DOI: 10.1016/j.ceb.2024.102418.


3D live imaging and phenotyping of CAR-T cell mediated-cytotoxicity using high-throughput Bessel oblique plane microscopy.

Wang Z, Wang J, Zhao Y, Jin J, Si W, Chen L Nat Commun. 2024; 15(1):6677.

PMID: 39107283 PMC: 11303822. DOI: 10.1038/s41467-024-51039-9.


Multimodal probing of T-cell recognition with hexapod heterostructures.

Huang X, Meng L, Cao G, Prominski A, Hu Y, Yang C Nat Methods. 2024; 21(5):857-867.

PMID: 38374262 PMC: 11723587. DOI: 10.1038/s41592-023-02165-7.


References
1.
Sasmal D, Feng W, Roy S, Leung P, He Y, Cai C . TCR-pMHC bond conformation controls TCR ligand discrimination. Cell Mol Immunol. 2019; 17(3):203-217. PMC: 7052167. DOI: 10.1038/s41423-019-0273-6. View

2.
Ritter A, Asano Y, Stinchcombe J, Dieckmann N, Chen B, Gawden-Bone C . Actin depletion initiates events leading to granule secretion at the immunological synapse. Immunity. 2015; 42(5):864-76. PMC: 4448150. DOI: 10.1016/j.immuni.2015.04.013. View

3.
Murugesan S, Hong J, Yi J, Li D, Beach J, Shao L . Formin-generated actomyosin arcs propel T cell receptor microcluster movement at the immune synapse. J Cell Biol. 2016; 215(3):383-399. PMC: 5100289. DOI: 10.1083/jcb.201603080. View

4.
Crites T, Padhan K, Muller J, Krogsgaard M, Gudla P, Lockett S . TCR Microclusters pre-exist and contain molecules necessary for TCR signal transduction. J Immunol. 2014; 193(1):56-67. PMC: 4096552. DOI: 10.4049/jimmunol.1400315. View

5.
Kamphorst A, Wieland A, Nasti T, Yang S, Zhang R, Barber D . Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science. 2017; 355(6332):1423-1427. PMC: 5595217. DOI: 10.1126/science.aaf0683. View