» Articles » PMID: 32424303

Multiplexed GTPase and GEF Biosensor Imaging Enables Network Connectivity Analysis

Overview
Journal Nat Chem Biol
Date 2020 May 20
PMID 32424303
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Here we generate fluorescence resonance energy transfer biosensors for guanine exchange factors (GEFs) by inserting a fluorescent protein pair in a structural 'hinge' common to many GEFs. Fluorescent biosensors can map the activation of signaling molecules in space and time, but it has not been possible to quantify how different activation events affect one another or contribute to a specific cell behavior. By imaging the GEF biosensors in the same cells as red-shifted biosensors of Rho GTPases, we can apply partial correlation analysis to parse out the extent to which each GEF contributes to the activation of a specific GTPase in regulating cell movement. Through analysis of spontaneous cell protrusion events, we identify when and where the GEF Asef regulates the GTPases Cdc42 and Rac1 to control cell edge dynamics. This approach exemplifies a powerful means to elucidate the real-time connectivity of signal transduction networks.

Citing Articles

To label or not: the need for validation in label-free imaging.

Szulczewski J, Yesilkoy F, Ulland T, Bartels R, Millis B, Boppart S J Biomed Opt. 2024; 29(Suppl 2):S22717.

PMID: 39711795 PMC: 11660684. DOI: 10.1117/1.JBO.29.S2.S22717.


Spatiotemporal analysis of F-actin polymerization with micropillar arrays reveals synchronization between adhesion sites.

Hollander S, Guo Y, Wolfenson H, Zaritsky A Mol Biol Cell. 2024; 35(12):br23.

PMID: 39441710 PMC: 11656478. DOI: 10.1091/mbc.E24-06-0276.


Excitable Rho dynamics control cell shape and motility by sequentially activating ERM proteins and actomyosin contractility.

Marshall-Burghardt S, Migueles-Ramirez R, Lin Q, El Baba N, Saada R, Umar M Sci Adv. 2024; 10(36):eadn6858.

PMID: 39241071 PMC: 11378911. DOI: 10.1126/sciadv.adn6858.


Live-cell biosensors based on the fluorescence lifetime of environment-sensing dyes.

Mehl B, Vairaprakash P, Li L, Hinde E, MacNevin C, Hsu C Cell Rep Methods. 2024; 4(3):100734.

PMID: 38503289 PMC: 10985238. DOI: 10.1016/j.crmeth.2024.100734.


Pick-up single-cell proteomic analysis for quantifying up to 3000 proteins in a Mammalian cell.

Wang Y, Guan Z, Shi S, Jiang Y, Zhang J, Yang Y Nat Commun. 2024; 15(1):1279.

PMID: 38341466 PMC: 10858870. DOI: 10.1038/s41467-024-45659-4.


References
1.
Devreotes P, Horwitz A . Signaling networks that regulate cell migration. Cold Spring Harb Perspect Biol. 2015; 7(8):a005959. PMC: 4526752. DOI: 10.1101/cshperspect.a005959. View

2.
Komatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y . Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell. 2011; 22(23):4647-56. PMC: 3226481. DOI: 10.1091/mbc.E11-01-0072. View

3.
Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P . Coordination of Rho GTPase activities during cell protrusion. Nature. 2009; 461(7260):99-103. PMC: 2885353. DOI: 10.1038/nature08242. View

4.
Yang H, Collins S, Meyer T . Locally excitable Cdc42 signals steer cells during chemotaxis. Nat Cell Biol. 2015; 18(2):191-201. PMC: 5015690. DOI: 10.1038/ncb3292. View

5.
Zawistowski J, Sabouri-Ghomi M, Danuser G, Hahn K, Hodgson L . A RhoC biosensor reveals differences in the activation kinetics of RhoA and RhoC in migrating cells. PLoS One. 2013; 8(11):e79877. PMC: 3818223. DOI: 10.1371/journal.pone.0079877. View