» Articles » PMID: 32391794

Synergistic Actions of V-SNARE Transmembrane Domains and Membrane-curvature Modifying Lipids in Neurotransmitter Release

Overview
Journal Elife
Specialty Biology
Date 2020 May 12
PMID 32391794
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Vesicle fusion is mediated by assembly of SNARE proteins between opposing membranes. While previous work suggested an active role of SNARE transmembrane domains (TMDs) in promoting membrane merger (Dhara et al., 2016), the underlying mechanism remained elusive. Here, we show that naturally-occurring v-SNARE TMD variants differentially regulate fusion pore dynamics in mouse chromaffin cells, indicating TMD flexibility as a mechanistic determinant that facilitates transmitter release from differentially-sized vesicles. Membrane curvature-promoting phospholipids like lysophosphatidylcholine or oleic acid profoundly alter pore expansion and fully rescue the decelerated fusion kinetics of TMD-rigidifying VAMP2 mutants. Thus, v-SNARE TMDs and phospholipids cooperate in supporting membrane curvature at the fusion pore neck. Oppositely, slowing of pore kinetics by the SNARE-regulator complexin-2 withstands the curvature-driven speeding of fusion, indicating that pore evolution is tightly coupled to progressive SNARE complex formation. Collectively, TMD-mediated support of membrane curvature and SNARE force-generated membrane bending promote fusion pore formation and expansion.

Citing Articles

Synaptobrevin2 monomers and dimers differentially engage to regulate the functional trans-SNARE assembly.

Patil S, Sanghrajka K, Sriram M, Chakraborty A, Majumdar S, Bhaskar B Life Sci Alliance. 2024; 7(4).

PMID: 38238088 PMC: 10796598. DOI: 10.26508/lsa.202402568.


Mechanisms of SNARE proteins in membrane fusion.

Jahn R, Cafiso D, Tamm L Nat Rev Mol Cell Biol. 2023; 25(2):101-118.

PMID: 37848589 PMC: 11578640. DOI: 10.1038/s41580-023-00668-x.


Double-Transmembrane Domain of SNAREs Decelerates the Fusion by Increasing the Protein-Lipid Mismatch.

Bu B, Tian Z, Li D, Zhang K, Chen W, Ji B J Mol Biol. 2023; 435(13):168089.

PMID: 37030649 PMC: 10247502. DOI: 10.1016/j.jmb.2023.168089.


Location of dopamine in lipid bilayers and its relevance to neuromodulator function.

Shafieenezhad A, Mitra S, Wassall S, Tristram-Nagle S, Nagle J, Petrache H Biophys J. 2023; 122(6):1118-1129.

PMID: 36804668 PMC: 10111280. DOI: 10.1016/j.bpj.2023.02.016.


The function of VAMP2 in mediating membrane fusion: An overview.

Yan C, Jiang J, Yang Y, Geng X, Dong W Front Mol Neurosci. 2023; 15:948160.

PMID: 36618823 PMC: 9816800. DOI: 10.3389/fnmol.2022.948160.


References
1.
Kreutzberger A, Kiessling V, Liang B, Yang S, Castle J, Tamm L . Asymmetric Phosphatidylethanolamine Distribution Controls Fusion Pore Lifetime and Probability. Biophys J. 2017; 113(9):1912-1915. PMC: 5685784. DOI: 10.1016/j.bpj.2017.09.014. View

2.
Zhang Z, Jackson M . Membrane bending energy and fusion pore kinetics in Ca(2+)-triggered exocytosis. Biophys J. 2010; 98(11):2524-34. PMC: 2877347. DOI: 10.1016/j.bpj.2010.02.043. View

3.
Han J, Pluhackova K, Bruns D, Bockmann R . Synaptobrevin transmembrane domain determines the structure and dynamics of the SNARE motif and the linker region. Biochim Biophys Acta. 2016; 1858(4):855-65. DOI: 10.1016/j.bbamem.2016.01.030. View

4.
Quint S, Widmaier S, Minde D, Hornburg D, Langosch D, Scharnagl C . Residue-specific side-chain packing determines the backbone dynamics of transmembrane model helices. Biophys J. 2010; 99(8):2541-9. PMC: 2955363. DOI: 10.1016/j.bpj.2010.08.031. View

5.
Liu Y, Sugiura Y, Lin W . The role of synaptobrevin1/VAMP1 in Ca2+-triggered neurotransmitter release at the mouse neuromuscular junction. J Physiol. 2011; 589(Pt 7):1603-18. PMC: 3099018. DOI: 10.1113/jphysiol.2010.201939. View