» Articles » PMID: 32386573

Structure-Guided Engineering of the Homodimeric Mango-IV Fluorescence Turn-on Aptamer Yields an RNA FRET Pair

Overview
Journal Structure
Publisher Cell Press
Date 2020 May 11
PMID 32386573
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Fluorescent RNA aptamers have been used in cells as biosensor reporters and tags for tracking transcripts. Recently, combined SELEX and microfluidic fluorescence sorting yielded three aptamers that activate fluorescence of TO1-Biotin: Mango-II, Mango-III, and Mango-IV. Of these, Mango-IV was best at imaging RNAs in both fixed and live mammalian cells. To understand how Mango-IV achieves activity in cells, we determined its crystal structure complexed with TO1-Biotin. The structure reveals a domain-swapped homodimer with two independent G-quadruplex fluorophore binding pockets. Structure-based analyses indicate that the Mango-IV core has relaxed fluorophore specificity, and a tendency to reorganize binding pocket residues. These molecular properties may endow it with robustness in the cellular milieu. Based on the domain-swapped structure, heterodimers between Mango-IV and the fluorescent aptamer iSpinach, joined by Watson-Crick base pairing, were constructed. These exhibited FRET between their respective aptamer-activated fluorophores, advancing fluorescent aptamer technology toward multi-color, RNA-based imaging of RNA coexpression and colocalization.

Citing Articles

Structure-Informed Design of an Ultra Bright RNA-activated Fluorophore.

Schneekloth Jr J, Yang M, Prestwood P, Passalacqua L, Balaratnam S, Fullenkamp C Res Sq. 2024; .

PMID: 39149476 PMC: 11326382. DOI: 10.21203/rs.3.rs-4750449/v1.


Structure-based insights into fluorogenic RNA aptamers.

Song Q, Tai X, Ren Q, Ren A Acta Biochim Biophys Sin (Shanghai). 2024; 57(1):108-118.

PMID: 39148467 PMC: 11802350. DOI: 10.3724/abbs.2024142.


Symmetry breaking of fluorophore binding to a G-quadruplex generates an RNA aptamer with picomolar KD.

Lu X, Passalacqua L, Nodwell M, Kong K, Caballero-Garcia G, Dolgosheina E Nucleic Acids Res. 2024; 52(14):8039-8051.

PMID: 38945550 PMC: 11317130. DOI: 10.1093/nar/gkae493.


RNA structure determination: From 2D to 3D.

Deng J, Fang X, Huang L, Li S, Xu L, Ye K Fundam Res. 2024; 3(5):727-737.

PMID: 38933295 PMC: 11197651. DOI: 10.1016/j.fmre.2023.06.001.


Turn-on RNA Mango Beacons for -acting fluorogenic nucleic acid detection.

Abdolahzadeh A, Ang Q, Caine J, Panchapakesan S, Thio S, Cojocaru R RNA. 2024; 30(4):392-403.

PMID: 38282417 PMC: 10946430. DOI: 10.1261/rna.079833.123.


References
1.
Song W, Strack R, Svensen N, Jaffrey S . Plug-and-play fluorophores extend the spectral properties of Spinach. J Am Chem Soc. 2014; 136(4):1198-201. PMC: 3929357. DOI: 10.1021/ja410819x. View

2.
Terwilliger T, Adams P, Read R, McCoy A, Moriarty N, Grosse-Kunstleve R . Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr D Biol Crystallogr. 2009; 65(Pt 6):582-601. PMC: 2685735. DOI: 10.1107/S0907444909012098. View

3.
Sheldrick G . Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):479-85. PMC: 2852312. DOI: 10.1107/S0907444909038360. View

4.
Kellenberger C, Wilson S, Sales-Lee J, Hammond M . RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. J Am Chem Soc. 2013; 135(13):4906-9. PMC: 3775879. DOI: 10.1021/ja311960g. View

5.
Trachman 3rd R, Demeshkina N, Lau M, Panchapakesan S, Jeng S, Unrau P . Structural basis for high-affinity fluorophore binding and activation by RNA Mango. Nat Chem Biol. 2017; 13(7):807-813. PMC: 5550021. DOI: 10.1038/nchembio.2392. View