» Articles » PMID: 32385371

Automatically Enhanced OCT Scans of the Retina: A Proof of Concept Study

Overview
Journal Sci Rep
Specialty Science
Date 2020 May 10
PMID 32385371
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

In this work we evaluated a postprocessing, customized automatic retinal OCT B-scan enhancement software for noise reduction, contrast enhancement and improved depth quality applicable to Heidelberg Engineering Spectralis OCT devices. A trained deep neural network was used to process images from an OCT dataset with ground truth biomarker gradings. Performance was assessed by the evaluation of two expert graders who evaluated image quality for B-scan with a clear preference for enhanced over original images. Objective measures such as SNR and noise estimation showed a significant improvement in quality. Presence grading of seven biomarkers IRF, SRF, ERM, Drusen, RPD, GA and iRORA resulted in similar intergrader agreement. Intergrader agreement was also compared with improvement in IRF and RPD, and disagreement in high variance biomarkers such as GA and iRORA.

Citing Articles

Prevalence and associated factors of epiretinal membrane using spectralis OCT in Fujian Eye Study.

Li Y, Li X, Hu Y, Wang B, Zhang M, Hu Q Sci Rep. 2025; 15(1):4297.

PMID: 39905107 PMC: 11794459. DOI: 10.1038/s41598-025-88234-7.


Inter-rater reliability in labeling quality and pathological features of retinal OCT scans: A customized annotation software approach.

Du K, Shah S, Bollepalli S, Ibrahim M, Gadari A, Sutharahan S PLoS One. 2024; 19(12):e0314707.

PMID: 39693322 PMC: 11654994. DOI: 10.1371/journal.pone.0314707.


Intra-operative OCT (iOCT) Super Resolution: a Two-Stage Methodology Leveraging High Quality Pre-operative OCT Scans.

Komninos C, Pissas T, Flores B, Bloch E, Vercauteren T, Ourselin S Ophthalmic Med Image Anal (2022). 2024; 13576:105-114.

PMID: 39404667 PMC: 7616592. DOI: 10.1007/978-3-031-16525-2_11.


Probabilistic volumetric speckle suppression in OCT using deep learning.

Chintada B, Ruiz-Lopera S, Restrepo R, Bouma B, Villiger M, Uribe-Patarroyo N Biomed Opt Express. 2024; 15(8):4453-4469.

PMID: 39346991 PMC: 11427188. DOI: 10.1364/BOE.523716.


Probabilistic volumetric speckle suppression in OCT using deep learning.

Chintada B, Ruiz-Lopera S, Restrepo R, Bouma B, Villiger M, Uribe-Patarroyo N ArXiv. 2023; .

PMID: 38106457 PMC: 10723542.


References
1.
Stein D, Ishikawa H, Hariprasad R, Wollstein G, Noecker R, Fujimoto J . A new quality assessment parameter for optical coherence tomography. Br J Ophthalmol. 2006; 90(2):186-90. PMC: 1860175. DOI: 10.1136/bjo.2004.059824. View

2.
Rogowska J, Brezinski M . Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images. Phys Med Biol. 2002; 47(4):641-55. DOI: 10.1088/0031-9155/47/4/307. View

3.
Wong A, Mishra A, Bizheva K, Clausi D . General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery. Opt Express. 2010; 18(8):8338-52. DOI: 10.1364/OE.18.008338. View

4.
Bernardes R, Maduro C, Serranho P, Araujo A, Barbeiro S, Cunha-Vaz J . Improved adaptive complex diffusion despeckling filter. Opt Express. 2010; 18(23):24048-59. DOI: 10.1364/OE.18.024048. View

5.
Li M, Idoughi R, Choudhury B, Heidrich W . Statistical model for OCT image denoising. Biomed Opt Express. 2017; 8(9):3903-3917. PMC: 5611912. DOI: 10.1364/BOE.8.003903. View