» Articles » PMID: 32358548

Promoting HO Production Via 2-electron Oxygen Reduction by Coordinating Partially Oxidized Pd with Defect Carbon

Overview
Journal Nat Commun
Specialty Biology
Date 2020 May 3
PMID 32358548
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

Electrochemical synthesis of HO through a selective two-electron (2e) oxygen reduction reaction (ORR) is an attractive alternative to the industrial anthraquinone oxidation method, as it allows decentralized HO production. Herein, we report that the synergistic interaction between partially oxidized palladium (Pd) and oxygen-functionalized carbon can promote 2e ORR in acidic electrolytes. An electrocatalyst synthesized by solution deposition of amorphous Pd clusters (Pd and Pd) onto mildly oxidized carbon nanotubes (Pd-OCNT) shows nearly 100% selectivity toward HO and a positive shift of ORR onset potential by ~320 mV compared with the OCNT substrate. A high mass activity (1.946 A mg at 0.45 V) of Pd-OCNT is achieved. Extended X-ray absorption fine structure characterization and density functional theory calculations suggest that the interaction between Pd clusters and the nearby oxygen-containing functional groups is key for the high selectivity and activity for 2e ORR.

Citing Articles

High HO production in membrane-free electrolyzer via anodic bubble shielding towards robust rural disinfection.

Yi K, Li C, Hu S, Yuan X, Logan B, Yang W Nat Commun. 2025; 16(1):1893.

PMID: 39987235 PMC: 11846911. DOI: 10.1038/s41467-025-57116-x.


How to Assess and Predict Electrical Double Layer Properties. Implications for Electrocatalysis.

Schott C, Schneider P, Song K, Yu H, Gotz R, Haimerl F Chem Rev. 2024; 124(22):12391-12462.

PMID: 39527623 PMC: 11613321. DOI: 10.1021/acs.chemrev.3c00806.


Fenton-Inactive Cd Enables Highly Selective O-Derived Domino Reaction.

Wang Y, Wang H, Yang Y, Hao Z, Deng R, Dong Q Adv Sci (Weinh). 2024; 11(47):e2407051.

PMID: 39513409 PMC: 11653596. DOI: 10.1002/advs.202407051.


Single-Atom Catalysts with p-Block Metals Surpass Transition-Metal Counterparts in the Photocatalytic HO Production.

Lu H, Yin H, Harmer J, Xiao M, You J, Chen P Angew Chem Int Ed Engl. 2024; 64(1):e202413769.

PMID: 39313757 PMC: 11701347. DOI: 10.1002/anie.202413769.


Anionic Surfactant-Modulated Electrode-Electrolyte Interface Promotes HO Electrosynthesis.

Sun W, Tang L, Ge W, Fan Y, Sheng X, Dong L Adv Sci (Weinh). 2024; 11(36):e2405474.

PMID: 39049687 PMC: 11423143. DOI: 10.1002/advs.202405474.


References
1.
Brillas E, Sires I, Oturan M . Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chem Rev. 2009; 109(12):6570-631. DOI: 10.1021/cr900136g. View

2.
Fukuzumi S, Yamada Y, Karlin K . Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell. Electrochim Acta. 2013; 82:493-511. PMC: 3584454. DOI: 10.1016/j.electacta.2012.03.132. View

3.
Young M, Links M, Popat S, Rittmann B, Torres C . Tailoring Microbial Electrochemical Cells for Production of Hydrogen Peroxide at High Concentrations and Efficiencies. ChemSusChem. 2016; 9(23):3345-3352. DOI: 10.1002/cssc.201601182. View

4.
Siahrostami S, Verdaguer-Casadevall A, Karamad M, Deiana D, Malacrida P, Wickman B . Enabling direct H2O2 production through rational electrocatalyst design. Nat Mater. 2013; 12(12):1137-43. DOI: 10.1038/nmat3795. View

5.
Verdaguer-Casadevall A, Deiana D, Karamad M, Siahrostami S, Malacrida P, Hansen T . Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 2014; 14(3):1603-8. DOI: 10.1021/nl500037x. View