» Articles » PMID: 32343876

Controlling the Product Platform of Carbon Dioxide Reduction: Adaptive Catalytic Hydrosilylation of CO Using a Molecular Cobalt(II) Triazine Complex

Overview
Specialty Chemistry
Date 2020 Apr 29
PMID 32343876
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The catalytic reduction of carbon dioxide (CO ) is considered a major pillar of future sustainable energy systems and chemical industries based on renewable energy and raw materials. Typically, catalysts and catalytic systems are transforming CO preferentially or even exclusively to one of the possible reduction levels and are then optimized for this specific product. Here, we report a cobalt-based catalytic system that enables the adaptive and highly selective transformation of carbon dioxide individually to either the formic acid, the formaldehyde, or the methanol level, demonstrating the possibility of molecular control over the desired product platform.

Citing Articles

Concatenating Microbial, Enzymatic, and Organometallic Catalysis for Integrated Conversion of Renewable Carbon Sources.

Klos N, Osterthun O, Mengers H, Lanzerath P, Graf von Westarp W, Lim G JACS Au. 2024; 4(12):4546-4570.

PMID: 39735920 PMC: 11672146. DOI: 10.1021/jacsau.4c00511.


Diazines and Triazines as Building Blocks in Ligands for Metal-Mediated Catalytic Transformations.

Doll J, Becker F, Rosca D ACS Org Inorg Au. 2024; 4(1):41-58.

PMID: 38344013 PMC: 10853918. DOI: 10.1021/acsorginorgau.3c00048.


A Cooperative Cobalt-Driven System for One-Carbon Extension in the Synthesis of ()-Silyl Enol Ethers from Aldehydes: Unlocking Regio- and Stereoselectivity.

Jena S, Frenzen L, Chugh V, Wu J, Weyhermuller T, Auer A J Am Chem Soc. 2023; 145(51):27922-27932.

PMID: 38086018 PMC: 10755702. DOI: 10.1021/jacs.3c10491.


Theory-guided development of homogeneous catalysts for the reduction of CO to formate, formaldehyde, and methanol derivatives.

Cramer H, Das S, Wodrich M, Corminboeuf C, Werle C, Leitner W Chem Sci. 2023; 14(11):2799-2807.

PMID: 36937594 PMC: 10016328. DOI: 10.1039/d2sc06793e.


Mechanism Insights into the Iridium(III)- and B(CF)-Catalyzed Reduction of CO to the Formaldehyde Level with Tertiary Silanes.

Guzman J, Urriolabeitia A, Padilla M, Garcia-Orduna P, Polo V, Fernandez-Alvarez F Inorg Chem. 2022; 61(50):20216-20221.

PMID: 36472385 PMC: 10468102. DOI: 10.1021/acs.inorgchem.2c03330.


References
1.
Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson P, Scopelliti R . A well-defined iron catalyst for the reduction of bicarbonates and carbon dioxide to formates, alkyl formates, and formamides. Angew Chem Int Ed Engl. 2010; 49(50):9777-80. DOI: 10.1002/anie.201004263. View

2.
Klankermayer J, Wesselbaum S, Beydoun K, Leitner W . Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry. Angew Chem Int Ed Engl. 2016; 55(26):7296-343. DOI: 10.1002/anie.201507458. View

3.
Erken C, Kaithal A, Sen S, Weyhermuller T, Holscher M, Werle C . Manganese-catalyzed hydroboration of carbon dioxide and other challenging carbonyl groups. Nat Commun. 2018; 9(1):4521. PMC: 6207666. DOI: 10.1038/s41467-018-06831-9. View

4.
Langer R, Diskin-Posner Y, Leitus G, Shimon L, Ben-David Y, Milstein D . Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity. Angew Chem Int Ed Engl. 2011; 50(42):9948-52. DOI: 10.1002/anie.201104542. View

5.
Huff C, Sanford M . Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. J Am Chem Soc. 2011; 133(45):18122-5. DOI: 10.1021/ja208760j. View