» Articles » PMID: 32342621

Two Diterpene Synthases from Chryseobacterium: Chryseodiene Synthase and Wanjudiene Synthase

Overview
Specialty Chemistry
Date 2020 Apr 29
PMID 32342621
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Two bacterial diterpene synthases (DTSs) from Chryseobacterium were characterised. The first enzyme yielded the new compound chryseodiene that closely resembles the known fusicoccane diterpenes from fungi, but its experimentally and computationally studied cyclisation mechanism is fundamentally different to the mechanism of fusicoccadiene synthase. The second enzyme produced wanjudiene, a diterpene hydrocarbon with a new skeleton, besides traces of the enantiomer of bonnadiene that was recently discovered from Allokutzneria albata.

Citing Articles

A new diterpenoid, carneadiol, isolated from Nocardia carnea IFM 12324.

Hara Y, Nakamura A, Manome T, Takaya A, Takahashi H, Ban S J Nat Med. 2025; 79(2):435-440.

PMID: 39873975 DOI: 10.1007/s11418-025-01878-7.


Revision of the Peniroquesine Biosynthetic Pathway by Retro-Biosynthetic Theoretical Analysis: Ring Strain Controls the Unique Carbocation Rearrangement Cascade.

Matsuyama T, Togashi K, Nakano M, Sato H, Uchiyama M JACS Au. 2023; 3(6):1596-1603.

PMID: 37388688 PMC: 10301677. DOI: 10.1021/jacsau.3c00039.


Characterization of a new fusicoccane-type diterpene synthase and an associated P450 enzyme.

Huang J, Lv J, Xiao L, Xu Q, Lin F, Wang G Beilstein J Org Chem. 2022; 18:1396-1402.

PMID: 36262672 PMC: 9551204. DOI: 10.3762/bjoc.18.144.


Diterpene Biosynthesis from Geranylgeranyl Diphosphate Analogues with Changed Reactivities Expands Skeletal Diversity.

Li H, Dickschat J Angew Chem Int Ed Engl. 2022; 61(43):e202211054.

PMID: 36066489 PMC: 9826473. DOI: 10.1002/anie.202211054.


Thermoadaptation in an Ancestral Diterpene Cyclase by Altered Loop Stability.

Hueting D, Vanga S, Syren P J Phys Chem B. 2022; 126(21):3809-3821.

PMID: 35583961 PMC: 9169049. DOI: 10.1021/acs.jpcb.1c10605.


References
1.
Dickschat J, Pahirulzaman K, Rabe P, Klapschinski T . An improved technique for the rapid chemical characterisation of bacterial terpene cyclases. Chembiochem. 2014; 15(6):810-4. DOI: 10.1002/cbic.201300763. View

2.
Yamada Y, Arima S, Nagamitsu T, Johmoto K, Uekusa H, Eguchi T . Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host. J Antibiot (Tokyo). 2015; 68(6):385-94. PMC: 4727541. DOI: 10.1038/ja.2014.171. View

3.
Jia Q, Chen X, Kollner T, Rinkel J, Fu J, Labbe J . Terpene Synthase Genes Originated from Bacteria through Horizontal Gene Transfer Contribute to Terpenoid Diversity in Fungi. Sci Rep. 2019; 9(1):9223. PMC: 6592883. DOI: 10.1038/s41598-019-45532-1. View

4.
Sassa T, Kenmoku H, Nakayama K, Kato N . Fusicocca-3(16),10(14)-diene, and beta- and delta-araneosenes, new fusicoccin biosynthesis-related diterpene hydrocarbons from Phomopsis amygdali. Biosci Biotechnol Biochem. 2004; 68(7):1608-10. DOI: 10.1271/bbb.68.1608. View

5.
Rabe P, Rinkel J, Dolja E, Schmitz T, Nubbemeyer B, Luu T . Mechanistic Investigations of Two Bacterial Diterpene Cyclases: Spiroviolene Synthase and Tsukubadiene Synthase. Angew Chem Int Ed Engl. 2017; 56(10):2776-2779. DOI: 10.1002/anie.201612439. View