» Articles » PMID: 32341848

Combined Nd:YAG and Er:YAG Lasers for Real-time Closed-loop Tissue-specific Laser Osteotomy

Overview
Specialty Radiology
Date 2020 Apr 29
PMID 32341848
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

A novel real-time and non-destructive method for differentiating soft from hard tissue in laser osteotomy has been introduced and tested in a closed-loop fashion. Two laser beams were combined: a low energy frequency-doubled nanosecond Nd:YAG for detecting the type of tissue, and a high energy microsecond Er:YAG for ablating bone. The working principle is based on adjusting the energy of the Nd:YAG laser until it is low enough to create a microplasma in the hard tissue only (different energies are required to create plasma in different tissue types). Analyzing the light emitted from the generated microplasma enables real-time feedback to a shutter that prevents the Er:YAG laser from ablating the soft tissue.

Citing Articles

Assessment of the Electrolyte Heterogeneity of Tissues in Mandibular Bone-Infiltrating Head and Neck Cancer Using Laser-Induced Breakdown Spectroscopy.

Winnand P, Boernsen K, Ooms M, Heitzer M, Vohl N, Lammert M Int J Mol Sci. 2024; 25(5).

PMID: 38473853 PMC: 10932450. DOI: 10.3390/ijms25052607.


Effectiveness of Diode Laser in Intraoral Soft Tissue Surgeries - An Evaluative Study.

Movaniya P, Desai N, Makwana T, Matariya R, Makwana K, Patel H Ann Maxillofac Surg. 2024; 13(2):167-172.

PMID: 38405572 PMC: 10883202. DOI: 10.4103/ams.ams_140_23.


Automation in Dentistry with Mechanical Drills and Lasers for Implant Osteotomy: A Narrative-Scoping Review.

Ganta G, Mosca R, Varsani R, Murthy V, Cheruvu K, Lu M Dent J (Basel). 2024; 12(1).

PMID: 38248216 PMC: 10814723. DOI: 10.3390/dj12010008.


Thermal damage and the prognostic evaluation of laser ablation of bone tissue-a review.

Xiao L, Guo J, Wang H, He Q, Xu Y, Yuan L Lasers Med Sci. 2023; 38(1):205.

PMID: 37676517 DOI: 10.1007/s10103-023-03868-1.


Real-time closed-loop tissue-specific laser osteotomy using deep-learning-assisted optical coherence tomography.

Bayhaqi Y, Hamidi A, Navarini A, Cattin P, Canbaz F, Zam A Biomed Opt Express. 2023; 14(6):2986-3002.

PMID: 37342720 PMC: 10278623. DOI: 10.1364/BOE.486660.


References
1.
Jacques S . Laser-tissue interactions. Photochemical, photothermal, and photomechanical. Surg Clin North Am. 1992; 72(3):531-58. DOI: 10.1016/s0039-6109(16)45731-2. View

2.
Stelzle F, Tangermann-Gerk K, Adler W, Zam A, Schmidt M, Douplik A . Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery. Lasers Surg Med. 2010; 42(4):319-25. DOI: 10.1002/lsm.20909. View

3.
Rupprecht S, Tangermann K, Kessler P, Neukam F, Wiltfang J . Er:YAG laser osteotomy directed by sensor controlled systems. J Craniomaxillofac Surg. 2003; 31(6):337-42. DOI: 10.1016/j.jcms.2003.07.007. View

4.
Gholami A, Baradaran-Ghahfarokhi M, Ebrahimi M, Baradaran-Ghahfarokhi M . Thermal Effects of Laser-osteotomy on Bone: Mathematical Computation Using Maple. J Med Signals Sens. 2014; 3(4):262-8. PMC: 3967429. View

5.
Lengenfelder B, Mehari F, Hohmann M, Heinlein M, Chelales E, Waldner M . Remote photoacoustic sensing using speckle-analysis. Sci Rep. 2019; 9(1):1057. PMC: 6355860. DOI: 10.1038/s41598-018-38446-x. View