» Articles » PMID: 32286335

A Global Database of Holocene Paleotemperature Records

Overview
Journal Sci Data
Specialty Science
Date 2020 Apr 15
PMID 32286335
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

A comprehensive database of paleoclimate records is needed to place recent warming into the longer-term context of natural climate variability. We present a global compilation of quality-controlled, published, temperature-sensitive proxy records extending back 12,000 years through the Holocene. Data were compiled from 679 sites where time series cover at least 4000 years, are resolved at sub-millennial scale (median spacing of 400 years or finer) and have at least one age control point every 3000 years, with cut-off values slackened in data-sparse regions. The data derive from lake sediment (51%), marine sediment (31%), peat (11%), glacier ice (3%), and other natural archives. The database contains 1319 records, including 157 from the Southern Hemisphere. The multi-proxy database comprises paleotemperature time series based on ecological assemblages, as well as biophysical and geochemical indicators that reflect mean annual or seasonal temperatures, as encoded in the database. This database can be used to reconstruct the spatiotemporal evolution of Holocene temperature at global to regional scales, and is publicly available in Linked Paleo Data (LiPD) format.

Citing Articles

Late Quaternary fluctuation in upper range limit of trees shapes endemic flora diversity on the Tibetan Plateau.

Xu J, Wang T, Wang X, Korner C, Cao X, Liang E Nat Commun. 2025; 16(1):1819.

PMID: 39979368 PMC: 11842749. DOI: 10.1038/s41467-025-57036-w.


Multicentennial cycles in continental demography synchronous with solar activity and climate stability.

Wirtz K, Antunes N, Diachenko A, Laabs J, Lemmen C, Lohmann G Nat Commun. 2024; 15(1):10248.

PMID: 39592580 PMC: 11599897. DOI: 10.1038/s41467-024-54474-w.


World of Crayfish™: a web platform towards real-time global mapping of freshwater crayfish and their pathogens.

Ion M, Bloomer C, Barascu T, Oficialdegui F, Shoobs N, Williams B PeerJ. 2024; 12:e18229.

PMID: 39421415 PMC: 11485098. DOI: 10.7717/peerj.18229.


What evidence exists for temporal variability in Arctic terrestrial and freshwater biodiversity throughout the Holocene? A systematic map protocol.

Martin A, Assmann J, Bradshaw R, Kuoppamaa M, Kuosmanen N, Normand S Environ Evid. 2024; 11(1):13.

PMID: 39294732 PMC: 11378824. DOI: 10.1186/s13750-022-00267-x.


The 4.2 ka event is not remarkable in the context of Holocene climate variability.

McKay N, Kaufman D, Arcusa S, Kolus H, Edge D, Erb M Nat Commun. 2024; 15(1):6555.

PMID: 39095415 PMC: 11297131. DOI: 10.1038/s41467-024-50886-w.


References
1.
Barrows T, Lehman S, Fifield L, De Deckker P . Absence of cooling in New Zealand and the adjacent ocean during the Younger Dryas chronozone. Science. 2007; 318(5847):86-9. DOI: 10.1126/science.1145873. View

2.
Fisher , Koerner , BOURGEOIS , Zielinski , Wake , HAMMER . Penny ice cap cores, baffin island, canada, and the wisconsinan foxe dome connection: two states of hudson bay ice cover . Science. 1998; 279(5351):692-5. DOI: 10.1126/science.279.5351.692. View

3.
Ersek V, Clark P, Mix A, Cheng H, Edwards R . Holocene winter climate variability in mid-latitude western North America. Nat Commun. 2012; 3:1219. DOI: 10.1038/ncomms2222. View

4.
Marsicek J, Shuman B, Bartlein P, Shafer S, Brewer S . Reconciling divergent trends and millennial variations in Holocene temperatures. Nature. 2018; 554(7690):92-96. DOI: 10.1038/nature25464. View

5.
Valiranta M, Salonen J, Heikkila M, Amon L, Helmens K, Klimaschewski A . Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe. Nat Commun. 2015; 6:6809. PMC: 4403309. DOI: 10.1038/ncomms7809. View