» Articles » PMID: 32269030

Gain-of-Function Genetic Alterations of G9a Drive Oncogenesis

Abstract

Epigenetic regulators, when genomically altered, may become driver oncogenes that mediate otherwise unexplained pro-oncogenic changes lacking a clear genetic stimulus, such as activation of the WNT/β-catenin pathway in melanoma. This study identifies previously unrecognized recurrent activating mutations in the G9a histone methyltransferase gene, as well as G9a genomic copy gains in approximately 26% of human melanomas, which collectively drive tumor growth and an immunologically sterile microenvironment beyond melanoma. Furthermore, the WNT pathway is identified as a key tumorigenic target of G9a gain-of-function, via suppression of the WNT antagonist DKK1. Importantly, genetic or pharmacologic suppression of mutated or amplified G9a using multiple and models demonstrates that G9a is a druggable target for therapeutic intervention in melanoma and other cancers harboring G9a genomic aberrations. SIGNIFICANCE: Oncogenic G9a abnormalities drive tumorigenesis and the "cold" immune microenvironment by activating WNT signaling through DKK1 repression. These results reveal a key druggable mechanism for tumor development and identify strategies to restore "hot" tumor immune microenvironments..

Citing Articles

Histone Methyltransferase G9a in Primary Sensory Neurons Promotes Inflammatory Pain and Transcription of and via Bivalent Histone Modifications.

Ghosh K, Huang Y, Jin D, Chen S, Pan H J Neurosci. 2025; 45(6).

PMID: 39824634 PMC: 11800753. DOI: 10.1523/JNEUROSCI.1790-24.2024.


G9a in Cancer: Mechanisms, Therapeutic Advancements, and Clinical Implications.

Ni Y, Shi M, Liu L, Lin D, Zeng H, Ong C Cancers (Basel). 2024; 16(12).

PMID: 38927881 PMC: 11201431. DOI: 10.3390/cancers16122175.


The Role and Mechanism of the Histone Methyltransferase G9a in Tumors: Update.

Zhou H, Gui J, Zhu L, Mi Y Onco Targets Ther. 2024; 17:449-462.

PMID: 38832355 PMC: 11146345. DOI: 10.2147/OTT.S451108.


EHMT2-mediated transcriptional reprogramming drives neuroendocrine transformation in non-small cell lung cancer.

Yang C, Ma S, Zhang J, Han Y, Wan L, Zhou W Proc Natl Acad Sci U S A. 2024; 121(23):e2317790121.

PMID: 38814866 PMC: 11161775. DOI: 10.1073/pnas.2317790121.


Newly developed oral bioavailable EHMT2 inhibitor as a potential epigenetic therapy for Prader-Willi syndrome.

Wang S, Xiong Y, Jang M, Park K, Donahue M, Velez J Mol Ther. 2024; 32(8):2662-2675.

PMID: 38796700 PMC: 11405540. DOI: 10.1016/j.ymthe.2024.05.034.


References
1.
Van Allen E, Miao D, Schilling B, Shukla S, Blank C, Zimmer L . Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015; 350(6257):207-211. PMC: 5054517. DOI: 10.1126/science.aad0095. View

2.
Wu H, Min J, Lunin V, Antoshenko T, Dombrovski L, Zeng H . Structural biology of human H3K9 methyltransferases. PLoS One. 2010; 5(1):e8570. PMC: 2797608. DOI: 10.1371/journal.pone.0008570. View

3.
Carbone M, Yang H, Pass H, Krausz T, Testa J, Gaudino G . BAP1 and cancer. Nat Rev Cancer. 2013; 13(3):153-9. PMC: 3792854. DOI: 10.1038/nrc3459. View

4.
Jia D, Jurkowska R, Zhang X, Jeltsch A, Cheng X . Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature. 2007; 449(7159):248-51. PMC: 2712830. DOI: 10.1038/nature06146. View

5.
Dillon S, Zhang X, Trievel R, Cheng X . The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005; 6(8):227. PMC: 1273623. DOI: 10.1186/gb-2005-6-8-227. View