» Articles » PMID: 32252812

The Preceding Root System Drives the Composition and Function of the Rhizosphere Microbiome

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2020 Apr 8
PMID 32252812
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Background: The soil environment is responsible for sustaining most terrestrial plant life, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere, and how it responds to agricultural management such as crop rotations and soil tillage, is vital for improving global food production.

Results: This study establishes an in-depth soil microbial gene catalogue based on the living-decaying rhizosphere niches in a cropping soil. The detritusphere microbiome regulates the composition and function of the rhizosphere microbiome to a greater extent than plant type: rhizosphere microbiomes of wheat and chickpea were homogenous (65-87% similarity) in the presence of decaying root (DR) systems but were heterogeneous (3-24% similarity) where DR was disrupted by tillage. When the microbiomes of the rhizosphere and the detritusphere interact in the presence of DR, there is significant degradation of plant root exudates by the rhizosphere microbiome, and genes associated with membrane transporters, carbohydrate and amino acid metabolism are enriched.

Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the detritusphere microbiome in determining the metagenome of developing root systems. Modifications in root microbial function through soil management can ultimately govern plant health, productivity and food security.

Citing Articles

Multifaceted impacts of nanoparticles on plant nutrient absorption and soil microbial communities.

Zhang H, Zheng T, Wang Y, Li T, Chi Q Front Plant Sci. 2024; 15:1497006.

PMID: 39606675 PMC: 11600800. DOI: 10.3389/fpls.2024.1497006.


Biological Decline of Alfalfa Is Accompanied by Negative Succession of Rhizosphere Soil Microbial Communities.

Ma Y, Shen Y, Zhou X, Ma H, Lan J, Fu B Plants (Basel). 2024; 13(18).

PMID: 39339564 PMC: 11434760. DOI: 10.3390/plants13182589.


The influence of urban environmental effects on the orchard soil microbial community structure and function: a case study in Zhejiang, China.

Dai R, Jin C, Xiao M Front Microbiol. 2024; 15:1403443.

PMID: 39314879 PMC: 11417026. DOI: 10.3389/fmicb.2024.1403443.


The Ability of Different Tea Tree Germplasm Resources in South China to Aggregate Rhizosphere Soil Characteristic Fungi Affects Tea Quality.

Jia X, Lin S, Zhang Q, Wang Y, Hong L, Li M Plants (Basel). 2024; 13(15).

PMID: 39124147 PMC: 11314174. DOI: 10.3390/plants13152029.


Lateral root enriched Massilia associated with plant flowering in maize.

Wang D, He X, Baer M, Lami K, Yu B, Tassinari A Microbiome. 2024; 12(1):124.

PMID: 38982519 PMC: 11234754. DOI: 10.1186/s40168-024-01839-4.


References
1.
Trevors J . One gram of soil: a microbial biochemical gene library. Antonie Van Leeuwenhoek. 2009; 97(2):99-106. DOI: 10.1007/s10482-009-9397-5. View

2.
Deng W, Nickle D, Learn G, Maust B, Mullins J . ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user's datasets. Bioinformatics. 2007; 23(17):2334-6. DOI: 10.1093/bioinformatics/btm331. View

3.
Li D, Liu C, Luo R, Sadakane K, Lam T . MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015; 31(10):1674-6. DOI: 10.1093/bioinformatics/btv033. View

4.
Schloss P, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E . Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009; 75(23):7537-41. PMC: 2786419. DOI: 10.1128/AEM.01541-09. View

5.
Parks D, Tyson G, Hugenholtz P, Beiko R . STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014; 30(21):3123-4. PMC: 4609014. DOI: 10.1093/bioinformatics/btu494. View