» Articles » PMID: 32245099

Radon Biomonitoring and MicroRNA in Lung Cancer

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2020 Apr 5
PMID 32245099
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Radon is the number one cause of lung cancer in non-smokers. microRNA expression in human bronchial epithelium cells is altered by radon, with particular reference to upregulation of miR-16, miR-15, miR-23, miR-19, miR-125, and downregulation of let-7, miR-194, miR-373, miR-124, miR-146, miR-369, and miR-652. These alterations alter cell cycle, oxidative stress, inflammation, oncogene suppression, and malignant transformation. Also DNA methylation is altered as a consequence of miR-29 modification induced by radon. Indeed miR-29 targets DNA methyltransferases causing inhibition of CpG sites methylation. Massive microRNA dysregulation occurs in the lung due to radon expose and is functionally related with the resulting lung damage. However, in humans this massive lung microRNA alterations only barely reflect onto blood microRNAs. Indeed, blood miR-19 was not found altered in radon-exposed subjects. Thus, microRNAs are massively dysregulated in experimental models of radon lung carcinogenesis. In humans these events are initially adaptive being aimed at inhibiting neoplastic transformation. Only in case of long-term exposure to radon, microRNA alterations lead towards cancer development. Accordingly, it is difficult in human to establish a microRNA signature reflecting radon exposure. Additional studies are required to understand the role of microRNAs in pathogenesis of radon-induced lung cancer.

Citing Articles

Recent advances of miR-23 in human diseases and growth development.

Qian X, Jiang Y, Yang Y, Zhang Y, Xu N, Xu B Noncoding RNA Res. 2025; 11:220-233.

PMID: 39896346 PMC: 11787465. DOI: 10.1016/j.ncrna.2024.12.010.


Transcriptomic analysis reveals transcription factors implicated in radon-induced lung carcinogenesis.

Liu X, Peng Y, Chen R, Zhou Y, Zou X, Xia M Toxicol Res (Camb). 2024; 13(5):tfae161.

PMID: 39371682 PMC: 11447380. DOI: 10.1093/toxres/tfae161.


Seasonal Indoor Radon Assessment and Estimation of Cancer Risk: A Case Study of Obafemi Awolowo University Nigeria.

Esan D, Ajiboye Y, Obed R, Olubodun B, Tobih J Environ Health Insights. 2024; 18:11786302241271536.

PMID: 39156878 PMC: 11329913. DOI: 10.1177/11786302241271536.


Vaping, Environmental Toxicants Exposure, and Lung Cancer Risk.

Shehata S, Toraih E, Ismail E, Hagras A, Elmorsy E, Fawzy M Cancers (Basel). 2023; 15(18).

PMID: 37760496 PMC: 10526315. DOI: 10.3390/cancers15184525.


Tumor cells-derived exosomal PD-L1 promotes the growth and invasion of lung cancer cells <em>in vitro via</em> mediating macrophages M2 polarization.

Lu X, Shen J, Huang S, Liu D, Wang H Eur J Histochem. 2023; 67(3).

PMID: 37526437 PMC: 10476537. DOI: 10.4081/ejh.2023.3784.


References
1.
Baysson H, Tirmarche M, Tymen G, Gouva S, Caillaud D, Artus J . Indoor radon and lung cancer in France. Epidemiology. 2004; 15(6):709-16. DOI: 10.1097/01.ede.0000142150.60556.b8. View

2.
Kanwal M, Ding X, Cao Y . Familial risk for lung cancer. Oncol Lett. 2017; 13(2):535-542. PMC: 5351216. DOI: 10.3892/ol.2016.5518. View

3.
Baumgartner U, Berger F, Gheinani A, Burgener S, Monastyrskaya K, Vassella E . miR-19b enhances proliferation and apoptosis resistance via the EGFR signaling pathway by targeting PP2A and BIM in non-small cell lung cancer. Mol Cancer. 2018; 17(1):44. PMC: 5817797. DOI: 10.1186/s12943-018-0781-5. View

4.
Tirmarche M, Harrison J, Laurier D, Paquet F, Blanchardon E, Marsh J . ICRP Publication 115. Lung cancer risk from radon and progeny and statement on radon. Ann ICRP. 2011; 40(1):1-64. DOI: 10.1016/j.icrp.2011.08.011. View

5.
Vincent K, Pichler M, Lee G, Ling H . MicroRNAs, genomic instability and cancer. Int J Mol Sci. 2014; 15(8):14475-91. PMC: 4159863. DOI: 10.3390/ijms150814475. View