» Articles » PMID: 32219093

MicroRNAs and Long Non-coding RNAs in C-Met-Regulated Cancers

Overview
Specialty Cell Biology
Date 2020 Mar 29
PMID 32219093
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are components of many signaling pathways associated with tumor aggressiveness and cancer metastasis. Some lncRNAs are classified as competitive endogenous RNAs (ceRNAs) that bind to specific miRNAs to prevent interaction with target mRNAs. Studies have shown that the hepatocyte growth factor/mesenchymal-epithelial transition factor (HGF/c-Met) pathway is involved in physiological and pathological processes such as cell growth, angiogenesis, and embryogenesis. Overexpression of c-Met can lead to sustained activation of downstream signals, resulting in carcinogenesis, metastasis, and resistance to targeted therapies. In this review, we evaluated the effects of anti-oncogenic and oncogenic non-coding RNAs (ncRNAs) on c-Met, and the interactions among lncRNAs, miRNAs, and c-Met in cancer using clinical and tissue chromatin immunoprecipition (ChIP) analysis data. We summarized current knowledge of the mechanisms and effects of the lncRNAs/miR-34a/c-Met axis in various tumor types, and evaluated the potential therapeutic value of lncRNAs and/or miRNAs targeted to c-Met on drug-resistance. Furthermore, we discussed the functions of lncRNAs and miRNAs in c-Met-related carcinogenesis and potential therapeutic strategies.

Citing Articles

Targeting c-Met in breast cancer: From mechanisms of chemoresistance to novel therapeutic strategies.

Iweala E, Amuji D, Oluwajembola A, Ugbogu E Curr Res Pharmacol Drug Discov. 2024; 7:100204.

PMID: 39524211 PMC: 11543557. DOI: 10.1016/j.crphar.2024.100204.


Management of triple-negative breast cancer by natural compounds through different mechanistic pathways.

Kaleem M, Thool M, Dumore N, Abdulrahman A, Ahmad W, Almostadi A Front Genet. 2024; 15:1440430.

PMID: 39130753 PMC: 11310065. DOI: 10.3389/fgene.2024.1440430.


lncRNA-microRNA axis in cancer drug resistance: particular focus on signaling pathways.

Saleh R, Al-Ouqaili M, Ali E, Alhajlah S, Kareem A, Shakir M Med Oncol. 2024; 41(2):52.

PMID: 38195957 DOI: 10.1007/s12032-023-02263-8.


MET overexpression in ovarian cancer via CD24-induced downregulation of miR-181a: A signalling for cellular quiescence-like state and chemoresistance in ovarian CSCs.

Kwon J, Jang Y, Yun B, Kang S, Kim Y, Kim B Cell Prolif. 2023; 57(5):e13582.

PMID: 38030594 PMC: 11056702. DOI: 10.1111/cpr.13582.


Virus-like nanoparticles as a theranostic platform for cancer.

Kim K, Lee A, Kim S, Heo H, Kim C Front Bioeng Biotechnol. 2023; 10:1106767.

PMID: 36714624 PMC: 9878189. DOI: 10.3389/fbioe.2022.1106767.


References
1.
Wan L, Zhu L, Xu J, Lu B, Yang Y, Liu F . MicroRNA-409-3p functions as a tumor suppressor in human lung adenocarcinoma by targeting c-Met. Cell Physiol Biochem. 2014; 34(4):1273-90. DOI: 10.1159/000366337. View

2.
Di Martino M, Campani V, Misso G, Gallo Cantafio M, Gulla A, Foresta U . In vivo activity of miR-34a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma. PLoS One. 2014; 9(2):e90005. PMC: 3937395. DOI: 10.1371/journal.pone.0090005. View

3.
Hwang C, Matoso A, Corney D, Flesken-Nikitin A, Korner S, Wang W . Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proc Natl Acad Sci U S A. 2011; 108(34):14240-5. PMC: 3161601. DOI: 10.1073/pnas.1017536108. View

4.
Chen Q, Jiao D, Yan L, Wu Y, Hu H, Song J . Comprehensive gene and microRNA expression profiling reveals miR-206 inhibits MET in lung cancer metastasis. Mol Biosyst. 2015; 11(8):2290-302. DOI: 10.1039/c4mb00734d. View

5.
Zhu L, Xue F, Xu X, Xu J, Hu S, Liu S . MicroRNA-198 inhibition of HGF/c-MET signaling pathway overcomes resistance to radiotherapy and induces apoptosis in human non-small-cell lung cancer. J Cell Biochem. 2018; 119(9):7873-7886. DOI: 10.1002/jcb.27204. View