» Articles » PMID: 32207871

Parahydrogen-Induced Radio Amplification by Stimulated Emission of Radiation

Overview
Specialty Chemistry
Date 2020 Mar 25
PMID 32207871
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Radio amplification by stimulated emission of radiation (RASER) was recently discovered in a low-field NMR spectrometer incorporating a highly specialized radio-frequency resonator, where a high degree of proton-spin polarization was achieved by reversible parahydrogen exchange. RASER activity, which results from the coherent coupling between the nuclear spins and the inductive detector, can overcome the limits of frequency resolution in NMR. Here we show that this phenomenon is not limited to low magnetic fields or the use of resonators with high-quality factors. We use a commercial bench-top 1.4 T NMR spectrometer in conjunction with pairwise parahydrogen addition producing proton-hyperpolarized molecules in the Earth's magnetic field (ALTADENA condition) or in a high magnetic field (PASADENA condition) to induce RASER without any radio-frequency excitation pulses. The results demonstrate that RASER activity can be observed on virtually any NMR spectrometer and measures most of the important NMR parameters with high precision.

Citing Articles

Through-bond and through-space radiofrequency amplification by stimulated emission of radiation.

Trofimov I, Salnikov O, Pravdivtsev A, de Maissin H, Yi A, Chekmenev E Commun Chem. 2024; 7(1):235.

PMID: 39414912 PMC: 11484792. DOI: 10.1038/s42004-024-01313-0.


Toward Ultra-High-Quality-Factor Wireless Masing Magnetic Resonance Sensing.

Adelabu I, Nantogma S, Fleischer S, Abdulmojeed M, de Maissin H, Schmidt A Angew Chem Int Ed Engl. 2024; 63(37):e202406551.

PMID: 38822492 PMC: 11463167. DOI: 10.1002/anie.202406551.


Metal-Mediated Catalytic Polarization Transfer from Hydrogen to 3,5-Dihalogenated Pyridines.

Tickner B, Dennington M, Collins B, Gater C, Tanner T, Whitwood A ACS Catal. 2024; 14(2):994-1004.

PMID: 38269038 PMC: 10804365. DOI: 10.1021/acscatal.3c05378.


Carbon-13 Radiofrequency Amplification by Stimulated Emission of Radiation of the Hyperpolarized Ketone and Hemiketal Forms of Allyl [1-C]Pyruvate.

Nantogma S, de Maissin H, Adelabu I, Abdurraheem A, Nelson C, Chukanov N ACS Sens. 2024; 9(2):770-780.

PMID: 38198709 PMC: 10922715. DOI: 10.1021/acssensors.3c02075.


C Radiofrequency Amplification by Stimulated Emission of Radiation Threshold Sensing of Chemical Reactions.

Schmidt A, Adelabu I, Nelson C, Nantogma S, Kiselev V, Zaitsev M J Am Chem Soc. 2023; 145(20):11121-11129.

PMID: 37172079 PMC: 10257364. DOI: 10.1021/jacs.3c00776.


References
1.
Kovtunov K, Pokochueva E, Salnikov O, Cousin S, Kurzbach D, Vuichoud B . Hyperpolarized NMR Spectroscopy: d-DNP, PHIP, and SABRE Techniques. Chem Asian J. 2018; . PMC: 6251772. DOI: 10.1002/asia.201800551. View

2.
Korchak S, Mamone S, Gloggler S . Over 50 % H and C Polarization for Generating Hyperpolarized Metabolites-A -Hydrogen Approach. ChemistryOpen. 2018; 7(9):672-676. PMC: 6121117. DOI: 10.1002/open.201800086. View

3.
Cavallari E, Carrera C, Aime S, Reineri F . C MR Hyperpolarization of Lactate by Using ParaHydrogen and Metabolic Transformation in Vitro. Chemistry. 2016; 23(5):1200-1204. DOI: 10.1002/chem.201605329. View

4.
Reineri F, Boi T, Aime S . ParaHydrogen Induced Polarization of 13C carboxylate resonance in acetate and pyruvate. Nat Commun. 2015; 6:5858. DOI: 10.1038/ncomms6858. View

5.
Adams R, Duckett S, Green R, Williamson D, Green G . A theoretical basis for spontaneous polarization transfer in non-hydrogenative parahydrogen-induced polarization. J Chem Phys. 2009; 131(19):194505. DOI: 10.1063/1.3254386. View