» Articles » PMID: 32193370

Olfactory Specificity Regulates Lipid Metabolism Through Neuroendocrine Signaling in Caenorhabditis Elegans

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Mar 21
PMID 32193370
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Olfactory and metabolic dysfunctions are intertwined phenomena associated with obesity and neurodegenerative diseases; yet how mechanistically olfaction regulates metabolic homeostasis remains unclear. Specificity of olfactory perception integrates diverse environmental odors and olfactory neurons expressing different receptors. Here, we report that specific but not all olfactory neurons actively regulate fat metabolism without affecting eating behaviors in Caenorhabditis elegans, and identified specific odors that reduce fat mobilization via inhibiting these neurons. Optogenetic activation or inhibition of the responsible olfactory neural circuit promotes the loss or gain of fat storage, respectively. Furthermore, we discovered that FLP-1 neuropeptide released from this olfactory neural circuit signals through peripheral NPR-4/neuropeptide receptor, SGK-1/serum- and glucocorticoid-inducible kinase, and specific isoforms of DAF-16/FOXO transcription factor to regulate fat storage. Our work reveals molecular mechanisms underlying olfactory regulation of fat metabolism, and suggests the association between olfactory perception specificity of each individual and his/her susceptibility to the development of obesity.

Citing Articles

SRS microscopy identifies inhibition of vitellogenesis as a mediator of lifespan extension by caloric restriction in .

Yang B, Manifold B, Han W, DeSousa C, Zhu W, Streets A bioRxiv. 2025; .

PMID: 40034647 PMC: 11875241. DOI: 10.1101/2025.01.31.636008.


Neuropeptide signaling network of Caenorhabditis elegans: from structure to behavior.

Watteyne J, Chudinova A, Ripoll-Sanchez L, Schafer W, Beets I Genetics. 2024; 228(3).

PMID: 39344922 PMC: 11538413. DOI: 10.1093/genetics/iyae141.


Hunger signalling in the olfactory bulb primes exploration, food-seeking and peripheral metabolism.

Stark R, Dempsey H, Kleeman E, Sassi M, Osborne-Lawrence S, Sheybani-Deloui S Mol Metab. 2024; 89:102025.

PMID: 39236785 PMC: 11471258. DOI: 10.1016/j.molmet.2024.102025.


Olfaction regulates peripheral mitophagy and mitochondrial function.

Dishart J, Pender C, Shen K, Zhang H, Ly M, Webb M Sci Adv. 2024; 10(25):eadn0014.

PMID: 38905346 PMC: 11192085. DOI: 10.1126/sciadv.adn0014.


Exposure to an aversive odor alters physiology.

Sarkar J, Vashisth K, Dixit A MicroPubl Biol. 2024; 2024.

PMID: 38764945 PMC: 11102002. DOI: 10.17912/micropub.biology.001198.


References
1.
Palouzier-Paulignan B, Lacroix M, Aime P, Baly C, Caillol M, Congar P . Olfaction under metabolic influences. Chem Senses. 2012; 37(9):769-97. PMC: 3529618. DOI: 10.1093/chemse/bjs059. View

2.
Riera C, Dillin A . Emerging Role of Sensory Perception in Aging and Metabolism. Trends Endocrinol Metab. 2016; 27(5):294-303. DOI: 10.1016/j.tem.2016.03.007. View

3.
Riera C, Tsaousidou E, Halloran J, Follett P, Hahn O, Pereira M . The Sense of Smell Impacts Metabolic Health and Obesity. Cell Metab. 2017; 26(1):198-211.e5. DOI: 10.1016/j.cmet.2017.06.015. View

4.
Tucker K, Overton J, Fadool D . Diet-induced obesity resistance of Kv1.3-/- mice is olfactory bulb dependent. J Neuroendocrinol. 2012; 24(8):1087-95. PMC: 3391345. DOI: 10.1111/j.1365-2826.2012.02314.x. View

5.
Su C, Menuz K, Carlson J . Olfactory perception: receptors, cells, and circuits. Cell. 2009; 139(1):45-59. PMC: 2765334. DOI: 10.1016/j.cell.2009.09.015. View