» Articles » PMID: 32183716

AllEnricher: a Comprehensive Gene Set Function Enrichment Tool for Both Model and Non-model Species

Overview
Publisher Biomed Central
Specialty Biology
Date 2020 Mar 19
PMID 32183716
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Function genomic studies will generally result in lists of genes that may provide clues for exploring biological questions and discovering unanticipated functions, based on differential gene expression analysis, differential epigenomic analysis or co-expression network analysis. While tools have been developed to identify biological functions that are enriched in the genes sets, there remains a need for comprehensive tools that identify functional enrichment of genes for both model and non-model species from a different function classification perspective.

Results: We developed AllEnricher, a tool that calculates gene set function enrichment, with user-defined updatable libraries backing up for both model and non-model species as well as providing comprehensive functional interpretation from multiple dimensions, including GO, KEGG, Reactome, DO and DisGeNET.

Conclusions: AllEnricher incorporates up to date information from different public resources and provides a comprehensive resolution for biologists to make sense out of specific gene sets, making it an advanced open-source tool for gene set function analysis.

Citing Articles

Comprehensive time-course gene expression evaluation of high-risk beef cattle to establish immunological characteristics associated with undifferentiated bovine respiratory disease.

Scott M, Valeris-Chacin R, Thompson A, Woolums A, Karisch B Front Immunol. 2024; 15:1412766.

PMID: 39346910 PMC: 11427276. DOI: 10.3389/fimmu.2024.1412766.


Inter-individual variations in circadian misalignment-induced NAFLD pathophysiology in mice.

Koike N, Umemura Y, Inokawa H, Tokuda I, Tsuchiya Y, Sasawaki Y iScience. 2024; 27(2):108934.

PMID: 38533453 PMC: 10964262. DOI: 10.1016/j.isci.2024.108934.


Methylation changes of liver DNA during the formation of gallstones.

Peng J, Li H, Tong F, Hu J, Li M, Chen G Epigenomics. 2024; .

PMID: 38444389 PMC: 11160444. DOI: 10.2217/epi-2023-0391.


Analysis of DNA Methylation Differences during the JIII Formation of .

Wang P, Li Y, Liu Z, Zhang W, Li D, Wang X Curr Issues Mol Biol. 2023; 45(12):9656-9673.

PMID: 38132449 PMC: 10742416. DOI: 10.3390/cimb45120603.


Flame (v2.0): advanced integration and interpretation of functional enrichment results from multiple sources.

Karatzas E, Baltoumas F, Aplakidou E, Kontou P, Stathopoulos P, Stefanis L Bioinformatics. 2023; 39(8).

PMID: 37540207 PMC: 10423032. DOI: 10.1093/bioinformatics/btad490.


References
1.
Zambon A, Gaj S, Ho I, Hanspers K, Vranizan K, Evelo C . GO-Elite: a flexible solution for pathway and ontology over-representation. Bioinformatics. 2012; 28(16):2209-10. PMC: 3413395. DOI: 10.1093/bioinformatics/bts366. View

2.
Huang Q, Lin B, Liu H, Ma X, Mo F, Yu W . RNA-Seq analyses generate comprehensive transcriptomic landscape and reveal complex transcript patterns in hepatocellular carcinoma. PLoS One. 2011; 6(10):e26168. PMC: 3197143. DOI: 10.1371/journal.pone.0026168. View

3.
Yu G, Wang L, Han Y, He Q . clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012; 16(5):284-7. PMC: 3339379. DOI: 10.1089/omi.2011.0118. View

4.
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M . KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2011; 40(Database issue):D109-14. PMC: 3245020. DOI: 10.1093/nar/gkr988. View

5.
Pinero J, Bravo A, Queralt-Rosinach N, Gutierrez-Sacristan A, Deu-Pons J, Centeno E . DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2016; 45(D1):D833-D839. PMC: 5210640. DOI: 10.1093/nar/gkw943. View