» Articles » PMID: 32180723

Roles for Countercharge in the Voltage Sensor Domain of Ion Channels

Overview
Journal Front Pharmacol
Date 2020 Mar 18
PMID 32180723
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Voltage-gated ion channels share a common structure typified by peripheral, voltage sensor domains. Their S4 segments respond to alteration in membrane potential with translocation coupled to ion permeation through a central pore domain. The mechanisms of gating in these channels have been intensely studied using pioneering methods such as measurement of charge displacement across a membrane, sequencing of genes coding for voltage-gated ion channels, and the development of all-atom molecular dynamics simulations using structural information from prokaryotic and eukaryotic channel proteins. One aspect of this work has been the description of the role of conserved negative countercharges in S1, S2, and S3 transmembrane segments to promote sequential salt-bridge formation with positively charged residues in S4 segments. These interactions facilitate S4 translocation through the lipid bilayer. In this review, we describe functional and computational work investigating the role of these countercharges in S4 translocation, voltage sensor domain hydration, and in diseases resulting from countercharge mutations.

Citing Articles

Understanding the role of mutations in voltage-gated sodium ion channels for cardiovascular disorders.

Jorgensen C J Gen Physiol. 2025; 157(2.

PMID: 39846865 PMC: 11756374. DOI: 10.1085/jgp.202413744.


The differential impacts of equivalent gating-charge mutations in voltage-gated sodium channels.

Elhanafy E, Akbari Ahangar A, Roth R, Gamal El-Din T, Bankston J, Li J J Gen Physiol. 2025; 157(2.

PMID: 39820972 PMC: 11740781. DOI: 10.1085/jgp.202413669.


ELUCIDATING THE DIFFERENTIAL IMPACTS OF EQUIVALENT GATING-CHARGE MUTATIONS IN VOLTAGE-GATED SODIUM CHANNELS.

Elhanafy E, Akbari Ahangar A, Roth R, Gamal El-Din T, Bankston J, Li J bioRxiv. 2024; .

PMID: 39314455 PMC: 11419121. DOI: 10.1101/2024.09.09.612021.


Mapping structural distribution and gating-property impacts of disease-associated mutations in voltage-gated sodium channels.

Akbari Ahangar A, Elhanafy E, Blanton H, Li J iScience. 2024; 27(9):110678.

PMID: 39286500 PMC: 11404175. DOI: 10.1016/j.isci.2024.110678.


Ca1.1 voltage-sensing domain III exclusively controls skeletal muscle excitation-contraction coupling.

Pelizzari S, Heiss M, Fernandez-Quintero M, El Ghaleb Y, Liedl K, Tuluc P Nat Commun. 2024; 15(1):7440.

PMID: 39198449 PMC: 11358481. DOI: 10.1038/s41467-024-51809-5.


References
1.
Pless S, Galpin J, Niciforovic A, Ahern C . Contributions of counter-charge in a potassium channel voltage-sensor domain. Nat Chem Biol. 2011; 7(9):617-23. PMC: 4933587. DOI: 10.1038/nchembio.622. View

2.
Chakrapani S, Sompornpisut P, Intharathep P, Roux B, Perozo E . The activated state of a sodium channel voltage sensor in a membrane environment. Proc Natl Acad Sci U S A. 2010; 107(12):5435-40. PMC: 2851821. DOI: 10.1073/pnas.0914109107. View

3.
Kubota T, Lacroix J, Bezanilla F, Correa A . Probing α-3(10) transitions in a voltage-sensing S4 helix. Biophys J. 2014; 107(5):1117-1128. PMC: 4156671. DOI: 10.1016/j.bpj.2014.07.042. View

4.
Glaudemans B, van der Wijst J, Scola R, Lorenzoni P, Heister A, van der Kemp A . A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. J Clin Invest. 2009; 119(4):936-42. PMC: 2662556. DOI: 10.1172/JCI36948. View

5.
Brunklaus A, Schorge S, Smith A, Ghanty I, Stewart K, Gardiner S . SCN1A variants from bench to bedside-improved clinical prediction from functional characterization. Hum Mutat. 2019; 41(2):363-374. DOI: 10.1002/humu.23943. View