» Articles » PMID: 28978442

Mechanisms Responsible for ω-Pore Currents in Ca Calcium Channel Voltage-Sensing Domains

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2017 Oct 6
PMID 28978442
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Mutations of positively charged amino acids in the S4 transmembrane segment of a voltage-gated ion channel form ion-conducting pathways through the voltage-sensing domain, named ω-current. Here, we used structure modeling and MD simulations to predict pathogenic ω-currents in Ca1.1 and Ca1.3 Ca channels bearing several S4 charge mutations. Our modeling predicts that mutations of Ca1.1-R1 (R528H/G, R897S) or Ca1.1-R2 (R900S, R1239H) linked to hypokalemic periodic paralysis type 1 and of Ca1.3-R3 (R990H) identified in aldosterone-producing adenomas conducts ω-currents in resting state, but not during voltage-sensing domain activation. The mechanism responsible for the ω-current and its amplitude depend on the number of charges in S4, the position of the mutated S4 charge and countercharges, and the nature of the replacing amino acid. Functional characterization validates the modeling prediction showing that Ca1.3-R990H channels conduct ω-currents at hyperpolarizing potentials, but not upon membrane depolarization compared with wild-type channels.

Citing Articles

Periodic paralysis.

Cannon S Handb Clin Neurol. 2024; 203:39-58.

PMID: 39174253 PMC: 11556526. DOI: 10.1016/B978-0-323-90820-7.00002-1.


Anionic omega currents from single countercharge mutants in the voltage-sensing domain of Ci-VSP.

Shen R, Roux B, Perozo E J Gen Physiol. 2023; 156(1).

PMID: 38019193 PMC: 10686229. DOI: 10.1085/jgp.202213311.


Characterization of two pathological gating-charge substitutions in Cav1.4 L-type calcium channels.

Heigl T, Netzer M, Zanetti L, Ganglberger M, Fernandez-Quintero M, Koschak A Channels (Austin). 2023; 17(1):2192360.

PMID: 36943941 PMC: 10038055. DOI: 10.1080/19336950.2023.2192360.


CACNA1D-Related Channelopathies: From Hypertension to Autism.

Ortner N Handb Exp Pharmacol. 2023; 279:183-225.

PMID: 36592224 DOI: 10.1007/164_2022_626.


Gating pore currents occur in CaV1.1 domain III mutants associated with HypoPP.

Wu F, Quinonez M, Cannon S J Gen Physiol. 2021; 153(11).

PMID: 34463712 PMC: 8563280. DOI: 10.1085/jgp.202112946.


References
1.
Chanda B, Bezanilla F . A common pathway for charge transport through voltage-sensing domains. Neuron. 2008; 57(3):345-51. DOI: 10.1016/j.neuron.2008.01.015. View

2.
Ulmschneider M, Bagneris C, McCusker E, DeCaen P, Delling M, Clapham D . Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proc Natl Acad Sci U S A. 2013; 110(16):6364-9. PMC: 3631666. DOI: 10.1073/pnas.1214667110. View

3.
Wood M, Schow E, Freites J, White S, Tombola F, Tobias D . Water wires in atomistic models of the Hv1 proton channel. Biochim Biophys Acta. 2011; 1818(2):286-93. PMC: 3245885. DOI: 10.1016/j.bbamem.2011.07.045. View

4.
Jensen M, Jogini V, Borhani D, Leffler A, Dror R, Shaw D . Mechanism of voltage gating in potassium channels. Science. 2012; 336(6078):229-33. DOI: 10.1126/science.1216533. View

5.
Lieb A, Ortner N, Striessnig J . C-terminal modulatory domain controls coupling of voltage-sensing to pore opening in Cav1.3 L-type Ca(2+) channels. Biophys J. 2014; 106(7):1467-75. PMC: 3976517. DOI: 10.1016/j.bpj.2014.02.017. View