Revisiting the Use of Biological Fluids for Noninvasive Glucose Detection
Overview
Authors
Affiliations
Additively manufactured microwave sensor for glucose level detection in saliva.
Piekarz I, Skarzynski K, Piekarz B, Wincza K, Gruszczynski S, Sloma M Sci Rep. 2024; 14(1):28235.
PMID: 39548327 PMC: 11568311. DOI: 10.1038/s41598-024-79867-1.
Non-invasive glucose prediction and classification using NIR technology with machine learning.
Naresh M, Nagaraju V, Kollem S, Kumar J, Peddakrishna S Heliyon. 2024; 10(7):e28720.
PMID: 38601525 PMC: 11004754. DOI: 10.1016/j.heliyon.2024.e28720.
Noninvasive Diabetes Detection through Human Breath Using TinyML-Powered E-Nose.
Gudino-Ochoa A, Garcia-Rodriguez J, Ochoa-Ornelas R, Cuevas-Chavez J, Sanchez-Arias D Sensors (Basel). 2024; 24(4).
PMID: 38400451 PMC: 10891698. DOI: 10.3390/s24041294.
Correlations of Salivary and Blood Glucose Levels among Six Saliva Collection Methods.
Cui Y, Zhang H, Zhu J, Liao Z, Wang S, Liu W Int J Environ Res Public Health. 2022; 19(7).
PMID: 35409805 PMC: 8999001. DOI: 10.3390/ijerph19074122.
Reddy V, Agarwal B, Ye Z, Zhang C, Roy K, Chinnappan A Nanomaterials (Basel). 2022; 12(7).
PMID: 35407200 PMC: 9000490. DOI: 10.3390/nano12071082.