» Articles » PMID: 32164554

MHiC, an Integrated User-friendly Tool for the Identification and Visualization of Significant Interactions in Hi-C Data

Overview
Journal BMC Genomics
Publisher Biomed Central
Specialty Genetics
Date 2020 Mar 14
PMID 32164554
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Hi-C is a molecular biology technique to understand the genome spatial structure. However, data obtained from Hi-C experiments is biased. Therefore, several methods have been developed to model Hi-C data and identify significant interactions. Each method receives its own Hi-C data structure and only work on specific operating systems.

Results: We introduce MHiC (Multi-function Hi-C data analysis tool), a tool to identify and visualize statistically signifiant interactions from Hi-C data. The MHiC tool (i) works on different operating systems, (ii) accepts various Hi-C data structures from different Hi-C analysis tools such as HiCUP or HiC-Pro, (iii) identify significant Hi-C interactions with GOTHiC, HiCNorm and Fit-Hi-C methods and (iv) visualizes interactions in Arc or Heatmap diagram. MHiC is an open-source tool which is freely available for download on https://github.com/MHi-C.

Conclusions: MHiC is an integrated tool for the analysis of high-throughput chromosome conformation capture (Hi-C) data.

Citing Articles

Accelerating 3D genomics data analysis with Microcket.

Zhao Y, Yang M, Gong F, Pan Y, Hu M, Peng Q Commun Biol. 2024; 7(1):675.

PMID: 38824179 PMC: 11144199. DOI: 10.1038/s42003-024-06382-4.


Proposing a hybrid technique of feature fusion and convolutional neural network for melanoma skin cancer detection.

Rahman M, Nasir M, Nur-A-Alam M, Khan M J Pathol Inform. 2023; 14:100341.

PMID: 38028129 PMC: 10630642. DOI: 10.1016/j.jpi.2023.100341.


A Comprehensive Investigation of Genomic Variants in Prostate Cancer Reveals 30 Putative Regulatory Variants.

Labani M, Beheshti A, Argha A, Alinejad-Rokny H Int J Mol Sci. 2023; 24(3).

PMID: 36768794 PMC: 9916892. DOI: 10.3390/ijms24032472.


A Survey on Machine Learning and Internet of Medical Things-Based Approaches for Handling COVID-19: Meta-Analysis.

Band S, Ardabili S, Yarahmadi A, Pahlevanzadeh B, Kiani A, Beheshti A Front Public Health. 2022; 10:869238.

PMID: 35812486 PMC: 9260273. DOI: 10.3389/fpubh.2022.869238.


MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments.

Alinejad-Rokny H, Modegh R, Rabiee H, Ramezani Sarbandi E, Rezaie N, Tam K PLoS Comput Biol. 2022; 18(6):e1010241.

PMID: 35749574 PMC: 9262194. DOI: 10.1371/journal.pcbi.1010241.


References
1.
Lieberman-Aiden E, van Berkum N, Williams L, Imakaev M, Ragoczy T, Telling A . Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009; 326(5950):289-93. PMC: 2858594. DOI: 10.1126/science.1181369. View

2.
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E . Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet. 2006; 38(11):1348-54. DOI: 10.1038/ng1896. View

3.
Mifsud B, Martincorena I, Darbo E, Sugar R, Schoenfelder S, Fraser P . GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data. PLoS One. 2017; 12(4):e0174744. PMC: 5381888. DOI: 10.1371/journal.pone.0174744. View

4.
Ay F, Bailey T, Noble W . Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res. 2014; 24(6):999-1011. PMC: 4032863. DOI: 10.1101/gr.160374.113. View

5.
Heinz S, Benner C, Spann N, Bertolino E, Lin Y, Laslo P . Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010; 38(4):576-89. PMC: 2898526. DOI: 10.1016/j.molcel.2010.05.004. View