» Articles » PMID: 32149610

The Single-cell EQTLGen Consortium

Overview
Journal Elife
Specialty Biology
Date 2020 Mar 10
PMID 32149610
Citations 103
Authors
Affiliations
Soon will be listed here.
Abstract

In recent years, functional genomics approaches combining genetic information with bulk RNA-sequencing data have identified the downstream expression effects of disease-associated genetic risk factors through so-called expression quantitative trait locus (eQTL) analysis. Single-cell RNA-sequencing creates enormous opportunities for mapping eQTLs across different cell types and in dynamic processes, many of which are obscured when using bulk methods. Rapid increase in throughput and reduction in cost per cell now allow this technology to be applied to large-scale population genetics studies. To fully leverage these emerging data resources, we have founded the single-cell eQTLGen consortium (sc-eQTLGen), aimed at pinpointing the cellular contexts in which disease-causing genetic variants affect gene expression. Here, we outline the goals, approach and potential utility of the sc-eQTLGen consortium. We also provide a set of study design considerations for future single-cell eQTL studies.

Citing Articles

The contribution of genetic determinants of blood gene expression and splicing to molecular phenotypes and health outcomes.

Tokolyi A, Persyn E, Nath A, Burnham K, Marten J, Vanderstichele T Nat Genet. 2025; 57(3):616-625.

PMID: 40038547 PMC: 11906350. DOI: 10.1038/s41588-025-02096-3.


Mapping the regulatory effects of common and rare non-coding variants across cellular and developmental contexts in the brain and heart.

Marderstein A, Kundu S, Padhi E, Deshpande S, Wang A, Robb E bioRxiv. 2025; .

PMID: 40027628 PMC: 11870466. DOI: 10.1101/2025.02.18.638922.


Exploring the Efficacy and Target Genes of Against Alzheimer's Disease Based on Multi-Omics, Computational Chemistry, and Experimental Verification.

Zheng Y, Gao X, Tang J, Gao L, Cui X, Liu K Curr Issues Mol Biol. 2025; 47(2).

PMID: 39996839 PMC: 11853862. DOI: 10.3390/cimb47020118.


Leveraging prior knowledge to infer gene regulatory networks from single-cell RNA-sequencing data.

Stock M, Losert C, Zambon M, Popp N, Lubatti G, Hormanseder E Mol Syst Biol. 2025; 21(3):214-230.

PMID: 39939367 PMC: 11876610. DOI: 10.1038/s44320-025-00088-3.


The human and non-human primate developmental GTEx projects.

Coorens T, Guillaumet-Adkins A, Kovner R, Linn R, Roberts V, Sule A Nature. 2025; 637(8046):557-564.

PMID: 39815096 DOI: 10.1038/s41586-024-08244-9.


References
1.
Chen L, Ge B, Casale F, Vasquez L, Kwan T, Garrido-Martin D . Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells. Cell. 2016; 167(5):1398-1414.e24. PMC: 5119954. DOI: 10.1016/j.cell.2016.10.026. View

2.
Maynard K, Jaffe A, Martinowich K . Spatial transcriptomics: putting genome-wide expression on the map. Neuropsychopharmacology. 2019; 45(1):232-233. PMC: 6879618. DOI: 10.1038/s41386-019-0484-7. View

3.
Wojcik G, Graff M, Nishimura K, Tao R, Haessler J, Gignoux C . Genetic analyses of diverse populations improves discovery for complex traits. Nature. 2019; 570(7762):514-518. PMC: 6785182. DOI: 10.1038/s41586-019-1310-4. View

4.
Lareau C, Duarte F, Chew J, Kartha V, Burkett Z, Kohlway A . Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat Biotechnol. 2019; 37(8):916-924. PMC: 10299900. DOI: 10.1038/s41587-019-0147-6. View

5.
Xue A, Wu Y, Zhu Z, Zhang F, Kemper K, Zheng Z . Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun. 2018; 9(1):2941. PMC: 6063971. DOI: 10.1038/s41467-018-04951-w. View