» Articles » PMID: 32134384

Brain Aging Comprises Many Modes of Structural and Functional Change with Distinct Genetic and Biophysical Associations

Overview
Journal Elife
Specialty Biology
Date 2020 Mar 6
PMID 32134384
Citations 79
Authors
Affiliations
Soon will be listed here.
Abstract

Brain imaging can be used to study how individuals' brains are aging, compared against population norms. This can inform on aspects of brain health; for example, smoking and blood pressure can be seen to accelerate brain aging. Typically, a single 'brain age' is estimated per subject, whereas here we identified 62 modes of subject variability, from 21,407 subjects' multimodal brain imaging data in UK Biobank. The modes represent different aspects of brain aging, showing distinct patterns of functional and structural brain change, and distinct patterns of association with genetics, lifestyle, cognition, physical measures and disease. While conventional brain-age modelling found no genetic associations, 34 modes had genetic associations. We suggest that it is important not to treat brain aging as a single homogeneous process, and that modelling of distinct patterns of structural and functional change will reveal more biologically meaningful markers of brain aging in health and disease.

Citing Articles

Genetically supported targets and drug repurposing for brain aging: A systematic study in the UK Biobank.

Yi F, Yuan J, Somekh J, Peleg M, Zhu Y, Jia Z Sci Adv. 2025; 11(11):eadr3757.

PMID: 40073132 PMC: 11900869. DOI: 10.1126/sciadv.adr3757.


Reliability of structural brain change in cognitively healthy adult samples.

Vidal-Pineiro D, Sorensen O, Stromstad M, Amlien I, Anderson M, Baare W bioRxiv. 2025; .

PMID: 40027710 PMC: 11870432. DOI: 10.1101/2024.06.03.592804.


An Update on Neuroaging on Earth and in Spaceflight.

Kuznetsov N, Statsenko Y, Ljubisavljevic M Int J Mol Sci. 2025; 26(4).

PMID: 40004201 PMC: 11855577. DOI: 10.3390/ijms26041738.


Temporal autocorrelation is predictive of age-An extensive MEG time-series analysis.

Stier C, Balestrieri E, Fehring J, Focke N, Wollbrink A, Dannlowski U Proc Natl Acad Sci U S A. 2025; 122(8):e2411098122.

PMID: 39977317 PMC: 11873822. DOI: 10.1073/pnas.2411098122.


Characterizing Brain-Cardiovascular Aging Using Multiorgan Imaging and Machine Learning.

Amirmoezzi Y, Cropley V, Mansour L S, Seguin C, Zalesky A, Tian Y J Neurosci. 2025; 45(8).

PMID: 39971581 PMC: 11841759. DOI: 10.1523/JNEUROSCI.1440-24.2024.


References
1.
Lambert J, Ibrahim-Verbaas C, Harold D, Naj A, Sims R, Bellenguez C . Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 2013; 45(12):1452-8. PMC: 3896259. DOI: 10.1038/ng.2802. View

2.
Vinke E, De Groot M, Venkatraghavan V, Klein S, Niessen W, Ikram M . Trajectories of imaging markers in brain aging: the Rotterdam Study. Neurobiol Aging. 2018; 71:32-40. DOI: 10.1016/j.neurobiolaging.2018.07.001. View

3.
Hoglinger G, Melhem N, Dickson D, Sleiman P, Wang L, Klei L . Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet. 2011; 43(7):699-705. PMC: 3125476. DOI: 10.1038/ng.859. View

4.
OFlaherty E . Modeling normal aging bone loss, with consideration of bone loss in osteoporosis. Toxicol Sci. 2000; 55(1):171-88. DOI: 10.1093/toxsci/55.1.171. View

5.
Simon-Sanchez J, Schulte C, Bras J, Sharma M, Gibbs J, Berg D . Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet. 2009; 41(12):1308-12. PMC: 2787725. DOI: 10.1038/ng.487. View