» Articles » PMID: 32130744

Luminescent Anion Sensing by Transition-Metal Dipyridylbenzene Complexes Incorporated into Acyclic, Macrocyclic and Interlocked Hosts

Overview
Journal Chemistry
Specialty Chemistry
Date 2020 Mar 5
PMID 32130744
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

A series of novel acyclic, macrocyclic and mechanically interlocked luminescent anion sensors have been prepared by incorporation of the isophthalamide motif into dipyridylbenzene to obtain cyclometallated complexes of platinum(II) and ruthenium(II). Both the acyclic and macrocyclic derivatives 7⋅Pt, 7⋅Ru⋅PF , 10⋅Pt and 10⋅Ru⋅PF are effective sensors for a range of halides and oxoanions. The near-infra red emitting ruthenium congeners exhibited an increased binding strength compared to platinum due to the cationic charge and thus additional electrostatic interactions. Intramolecular hydrogen-bonding between the dipyridylbenzene ligand and the amide carbonyls increases the preorganisation of both acyclic and macrocyclic metal derivatives resulting in no discernible macrocyclic effect. Interlocked analogues were also prepared, and preliminary luminescent chloride anion spectrometric titrations with 12⋅Ru⋅(PF ) demonstrate a marked increase in halide binding affinity due to the complementary chloride binding pocket of the [2]rotaxane. H NMR binding titrations indicate the interlocked dicationic receptor is capable of chloride recognition even in competitive 30 % aqueous mixtures.

Citing Articles

Bis-Squaramide-Based [2]Rotaxane Hosts for Anion Recognition.

Arun A, Docker A, Beer P Chemistry. 2024; 30(69):e202402731.

PMID: 39231129 PMC: 11632403. DOI: 10.1002/chem.202402731.


Luminescent Pt(II) Complexes Using Unsymmetrical Bis(2-pyridylimino)isoindolate Analogues.

Payce E, Knighton R, Platts J, Horton P, Coles S, Pope S Inorg Chem. 2024; 63(18):8273-8285.

PMID: 38656154 PMC: 11080048. DOI: 10.1021/acs.inorgchem.4c00558.


Polycationic Ru(II) Luminophores: Syntheses, Photophysics, and Application in Electrostatically Driven Sensitization of Lanthanide Luminescence.

Knighton R, Beames J, Pope S Inorg Chem. 2023; 62(48):19446-19456.

PMID: 37984058 PMC: 10698718. DOI: 10.1021/acs.inorgchem.3c02352.


Remarkably Selective Binding, Behavior Modification, and Switchable Release of (Bipyridine)Ru(II) vis-à-vis (Phenanthroline)Ru(II) by Trimeric Cyclophanes in Water.

Lin H, Yao C, Li J, Gunaratne H, Singh W, Huang M JACS Au. 2023; 3(8):2257-2268.

PMID: 37654579 PMC: 10466343. DOI: 10.1021/jacsau.3c00279.


Squaramide-Based Heteroditopic [2]Rotaxanes for Sodium Halide Ion-Pair Recognition.

Arun A, Docker A, Tay H, Beer P Chemistry. 2023; 29(49):e202301446.

PMID: 37300836 PMC: 10946609. DOI: 10.1002/chem.202301446.


References
1.
Kozhevnikov V, Donnio B, Heinrich B, Bruce D . Morphology-driven absorption and emission colour changes in liquid-crystalline, cyclometallated platinum(II) complexes. Chem Commun (Camb). 2014; 50(91):14191-3. DOI: 10.1039/c4cc06958g. View

2.
Farley S, Rochester D, Thompson A, Howard J, Williams J . Controlling emission energy, self-quenching, and excimer formation in highly luminescent N--C--N-coordinated platinum(II) complexes. Inorg Chem. 2005; 44(26):9690-703. DOI: 10.1021/ic051049e. View

3.
Molina P, Zapata F, Caballero A . Anion Recognition Strategies Based on Combined Noncovalent Interactions. Chem Rev. 2017; 117(15):9907-9972. DOI: 10.1021/acs.chemrev.6b00814. View

4.
Bazzoni M, Terenziani F, Secchi A, Cera G, Jabin I, De Leener G . Tuning the Fluorescence Through Reorientation of the Axle in Calix[6]arene-Based Pseudorotaxanes. Chemistry. 2020; 26(14):3022-3025. DOI: 10.1002/chem.201905500. View

5.
Langton M, Blackburn O, Lang T, Faulkner S, Beer P . Nitrite-templated synthesis of lanthanide-containing [2]rotaxanes for anion sensing. Angew Chem Int Ed Engl. 2014; 53(43):11463-6. PMC: 4497609. DOI: 10.1002/anie.201405131. View