» Articles » PMID: 32112907

Imaging of Intratumoral Heterogeneity in High-grade Glioma

Overview
Journal Cancer Lett
Specialty Oncology
Date 2020 Mar 1
PMID 32112907
Citations 58
Authors
Affiliations
Soon will be listed here.
Abstract

High-grade glioma (HGG), and particularly Glioblastoma (GBM), can exhibit pronounced intratumoral heterogeneity that confounds clinical diagnosis and management. While conventional contrast-enhanced MRI lacks the capability to resolve this heterogeneity, advanced MRI techniques and PET imaging offer a spectrum of physiologic and biophysical image features to improve the specificity of imaging diagnoses. Published studies have shown how integrating these advanced techniques can help better define histologically distinct targets for surgical and radiation treatment planning, and help evaluate the regional heterogeneity of tumor recurrence and response assessment following standard adjuvant therapy. Application of texture analysis and machine learning (ML) algorithms has also enabled the emerging field of radiogenomics, which can spatially resolve the regional and genetically distinct subpopulations that coexist within a single GBM tumor. This review focuses on the latest advances in neuro-oncologic imaging and their clinical applications for the assessment of intratumoral heterogeneity.

Citing Articles

Response Assessment in Long-Term Glioblastoma Survivors Using a Multiparametric MRI-Based Prediction Model.

de Godoy L, Rajan A, Banihashemi A, Patel T, Desai A, Bagley S Brain Sci. 2025; 15(2).

PMID: 40002479 PMC: 11852837. DOI: 10.3390/brainsci15020146.


Neuroplasticity in Diffuse Low-grade Gliomas: Backward Modelling of Brain-tumor Interactions Prior to Diagnosis is Needed to Better Predict Recovery after Treatment.

Duffau H Curr Neurol Neurosci Rep. 2025; 25(1):15.

PMID: 39786618 DOI: 10.1007/s11910-024-01402-6.


Metabolic checkpoints in glioblastomas: targets for new therapies and non-invasive detection.

Li W, Wang Z, Chen S, Zuo M, Xiang Y, Yuan Y Front Oncol. 2024; 14:1462424.

PMID: 39678512 PMC: 11638224. DOI: 10.3389/fonc.2024.1462424.


Biologically informed deep neural networks provide quantitative assessment of intratumoral heterogeneity in post treatment glioblastoma.

Wang H, Argenziano M, Yoon H, Boyett D, Save A, Petridis P NPJ Digit Med. 2024; 7(1):292.

PMID: 39427044 PMC: 11490546. DOI: 10.1038/s41746-024-01277-4.


Radiogenomics: bridging the gap between imaging and genomics for precision oncology.

He W, Huang W, Zhang L, Wu X, Zhang S, Zhang B MedComm (2020). 2024; 5(9):e722.

PMID: 39252824 PMC: 11381657. DOI: 10.1002/mco2.722.


References
1.
Gutman D, Cooper L, Hwang S, Holder C, Gao J, Aurora T . MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology. 2013; 267(2):560-9. PMC: 3632807. DOI: 10.1148/radiol.13120118. View

2.
Price S, Green H, Dean A, Joseph J, Hutchinson P, Gillard J . Correlation of MR relative cerebral blood volume measurements with cellular density and proliferation in high-grade gliomas: an image-guided biopsy study. AJNR Am J Neuroradiol. 2010; 32(3):501-6. PMC: 8013109. DOI: 10.3174/ajnr.A2312. View

3.
Maia Jr A, Malheiros S, da Rocha A, da Silva C, Gabbai A, Ferraz F . MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR Am J Neuroradiol. 2005; 26(4):777-83. PMC: 7977110. View

4.
Youland R, Kitange G, Peterson T, Pafundi D, Ramiscal J, Pokorny J . The role of LAT1 in (18)F-DOPA uptake in malignant gliomas. J Neurooncol. 2012; 111(1):11-8. PMC: 3907171. DOI: 10.1007/s11060-012-0986-1. View

5.
Law M, Yang S, Babb J, Knopp E, Golfinos J, Zagzag D . Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol. 2004; 25(5):746-55. PMC: 7974484. View