» Articles » PMID: 32086524

Pattern Similarity Analyses of FrontoParietal Task Coding: Individual Variation and Genetic Influences

Overview
Journal Cereb Cortex
Specialty Neurology
Date 2020 Feb 23
PMID 32086524
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Pattern similarity analyses are increasingly used to characterize coding properties of brain regions, but relatively few have focused on cognitive control processes in FrontoParietal regions. Here, we use the Human Connectome Project (HCP) N-back task functional magnetic resonance imaging (fMRI) dataset to examine individual differences and genetic influences on the coding of working memory load (0-back, 2-back) and perceptual category (Face, Place). Participants were grouped into 105 monozygotic twin, 78 dizygotic twin, 99 nontwin sibling, and 100 unrelated pairs. Activation pattern similarity was used to test the hypothesis that FrontoParietal regions would have higher similarity for same load conditions, while Visual regions would have higher similarity in same perceptual category conditions. Results confirmed this highly robust regional double dissociation in neural coding, which also predicted individual differences in behavioral performance. In pair-based analyses, anatomically selective genetic relatedness effects were observed: relatedness predicted greater activation pattern similarity in FrontoParietal only for load coding and in Visual only for perceptual coding. Further, in related pairs, the similarity of load coding in FrontoParietal regions was uniquely associated with behavioral performance. Together, these results highlight the power of task fMRI pattern similarity analyses for detecting key coding and heritability features of brain regions.

Citing Articles

Statistical Learning of Incidental Perceptual Regularities Induces Sensory Conditioned Cortical Responses.

Greco A, DAlessandro M, Gallitto G, Rastelli C, Braun C, Caria A Biology (Basel). 2024; 13(8).

PMID: 39194514 PMC: 11351719. DOI: 10.3390/biology13080576.


Heritability of cognitive and emotion processing during functional MRI in a twin sample.

Park H, Chilver M, Quide Y, Montalto A, Schofield P, Williams L Hum Brain Mapp. 2024; 45(1):e26557.

PMID: 38224545 PMC: 10785190. DOI: 10.1002/hbm.26557.


On the psychometric evaluation of cognitive control tasks: An Investigation with the Dual Mechanisms of Cognitive Control (DMCC) battery.

Snijder J, Tang R, Bugg J, Conway A, Braver T Behav Res Methods. 2023; 56(3):1604-1639.

PMID: 37040066 PMC: 10088767. DOI: 10.3758/s13428-023-02111-7.


Face Processing in Developmental Prosopagnosia: Altered Neural Representations in the Fusiform Face Area.

Haeger A, Pouzat C, Luecken V, NDiaye K, Elger C, Kennerknecht I Front Behav Neurosci. 2021; 15:744466.

PMID: 34867227 PMC: 8636799. DOI: 10.3389/fnbeh.2021.744466.


The role of neural load effects in predicting individual differences in working memory function.

Li Y, Cooper S, Braver T Neuroimage. 2021; 245:118656.

PMID: 34678433 PMC: 8880845. DOI: 10.1016/j.neuroimage.2021.118656.


References
1.
Oedekoven C, Keidel J, Berens S, Bird C . Reinstatement of memory representations for lifelike events over the course of a week. Sci Rep. 2017; 7(1):14305. PMC: 5662713. DOI: 10.1038/s41598-017-13938-4. View

2.
Cooper S, Jackson J, Barch D, Braver T . Neuroimaging of individual differences: A latent variable modeling perspective. Neurosci Biobehav Rev. 2019; 98:29-46. PMC: 6980382. DOI: 10.1016/j.neubiorev.2018.12.022. View

3.
DEsposito M, Postle B . The cognitive neuroscience of working memory. Annu Rev Psychol. 2014; 66:115-42. PMC: 4374359. DOI: 10.1146/annurev-psych-010814-015031. View

4.
Blokland G, McMahon K, Hoffman J, Zhu G, Meredith M, Martin N . Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: a twin fMRI study. Biol Psychol. 2008; 79(1):70-9. PMC: 2562930. DOI: 10.1016/j.biopsycho.2008.03.006. View

5.
Nili H, Wingfield C, Walther A, Su L, Marslen-Wilson W, Kriegeskorte N . A toolbox for representational similarity analysis. PLoS Comput Biol. 2014; 10(4):e1003553. PMC: 3990488. DOI: 10.1371/journal.pcbi.1003553. View