» Articles » PMID: 32077852

Rapid Regulation of Vesicle Priming Explains Synaptic Facilitation Despite Heterogeneous Vesicle:Ca Channel Distances

Overview
Journal Elife
Specialty Biology
Date 2020 Feb 21
PMID 32077852
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Chemical synaptic transmission relies on the Ca-induced fusion of transmitter-laden vesicles whose coupling distance to Ca channels determines synaptic release probability and short-term plasticity, the facilitation or depression of repetitive responses. Here, using electron- and super-resolution microscopy at the neuromuscular junction we quantitatively map vesicle:Ca channel coupling distances. These are very heterogeneous, resulting in a broad spectrum of vesicular release probabilities within synapses. Stochastic simulations of transmitter release from vesicles placed according to this distribution revealed strong constraints on short-term plasticity; particularly facilitation was difficult to achieve. We show that postulated facilitation mechanisms operating via activity-dependent changes of vesicular release probability (e.g. by a facilitation fusion sensor) generate too little facilitation and too much variance. In contrast, Ca-dependent mechanisms rapidly increasing the number of releasable vesicles reliably reproduce short-term plasticity and variance of synaptic responses. We propose activity-dependent inhibition of vesicle un-priming or release site activation as novel facilitation mechanisms.

Citing Articles

Presynaptic cAMP-PKA-mediated potentiation induces reconfiguration of synaptic vesicle pools and channel-vesicle coupling at hippocampal mossy fiber boutons.

Kim O, Okamoto Y, Kaufmann W, Brose N, Shigemoto R, Jonas P PLoS Biol. 2024; 22(11):e3002879.

PMID: 39556620 PMC: 11573138. DOI: 10.1371/journal.pbio.3002879.


Synaptotagmin 7 docks synaptic vesicles to support facilitation and Doc2α-triggered asynchronous release.

Wu Z, Kusick G, Berns M, Raychaudhuri S, Itoh K, Walter A Elife. 2024; 12.

PMID: 38536730 PMC: 10972563. DOI: 10.7554/eLife.90632.


Frequency of Spontaneous Neurotransmission at Individual Boutons Corresponds to the Size of the Readily Releasable Pool of Vesicles.

Ralowicz A, Hokeness S, Hoppa M J Neurosci. 2024; 44(18).

PMID: 38383495 PMC: 11063817. DOI: 10.1523/JNEUROSCI.1253-23.2024.


A maximum of two readily releasable vesicles per docking site at a cerebellar single active zone synapse.

Silva M, Tran V, Marty A Elife. 2024; 12.

PMID: 38180320 PMC: 10963025. DOI: 10.7554/eLife.91087.


Interpretation of presynaptic phenotypes of synaptic plasticity in terms of a two-step priming process.

Neher E J Gen Physiol. 2023; 156(1).

PMID: 38112713 PMC: 10730358. DOI: 10.1085/jgp.202313454.


References
1.
Imig C, Min S, Krinner S, Arancillo M, Rosenmund C, Sudhof T . The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones. Neuron. 2014; 84(2):416-31. DOI: 10.1016/j.neuron.2014.10.009. View

2.
Walter A, Groffen A, Sorensen J, Verhage M . Multiple Ca2+ sensors in secretion: teammates, competitors or autocrats?. Trends Neurosci. 2011; 34(9):487-97. DOI: 10.1016/j.tins.2011.07.003. View

3.
Wang L, Kaczmarek L . High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature. 1998; 394(6691):384-8. DOI: 10.1038/28645. View

4.
Trigo F, Sakaba T, Ogden D, Marty A . Readily releasable pool of synaptic vesicles measured at single synaptic contacts. Proc Natl Acad Sci U S A. 2012; 109(44):18138-43. PMC: 3497746. DOI: 10.1073/pnas.1209798109. View

5.
Burgalossi A, Jung S, Meyer G, Jockusch W, Jahn O, Taschenberger H . SNARE protein recycling by αSNAP and βSNAP supports synaptic vesicle priming. Neuron. 2010; 68(3):473-87. DOI: 10.1016/j.neuron.2010.09.019. View