» Articles » PMID: 32071297

Electrochemically-stable Ligands Bridge the Photoluminescence-electroluminescence Gap of Quantum Dots

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Feb 20
PMID 32071297
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Colloidal quantum dots are promising emitters for quantum-dot-based light-emitting-diodes. Though quantum dots have been synthesized with efficient, stable, and high colour-purity photoluminescence, inheriting their superior luminescent properties in light-emitting-diodes remains challenging. This is commonly attributed to unbalanced charge injection and/or interfacial exciton quenching in the devices. Here, a general but previously overlooked degradation channel in light-emitting-diodes, i.e., operando electrochemical reactions of surface ligands with injected charge carriers, is identified. We develop a strategy of applying electrochemically-inert ligands to quantum dots with excellent luminescent properties to bridge their photoluminescence-electroluminescence gap. This material-design principle is general for boosting electroluminescence efficiency and lifetime of the light-emitting-diodes, resulting in record-long operational lifetimes for both red-emitting light-emitting-diodes (T > 3800 h at 1000 cd m) and blue-emitting light-emitting-diodes (T > 10,000 h at 100 cd m). Our study provides a critical guideline for the quantum dots to be used in optoelectronic and electronic devices.

Citing Articles

Van der Waals quantum dots on layered hexagonal boron nitride.

Wu Y, Xiao Y, Zhao Y, Shen Y, Sun K, Wang B Proc Natl Acad Sci U S A. 2025; 122(9):e2417859122.

PMID: 39999178 PMC: 11892640. DOI: 10.1073/pnas.2417859122.


Where Do the Electrons Go? Studying Loss Processes in the Electrochemical Charging of Semiconductor Nanomaterials.

Ubbink R, Vogel Y, Stam M, Chen H, Houtepen A Chem Mater. 2025; 37(2):736-745.

PMID: 39896438 PMC: 11780746. DOI: 10.1021/acs.chemmater.4c02998.


Landau-Levich Scaling for Optimization of Quantum Dot Layer Morphology and Thickness in Quantum-Dot Light-Emitting Diodes.

Xu Y, Dixon G, Xie Q, Gilchrist J, Cossairt B, Ginger D ACS Nano. 2025; 19(5):5680-5687.

PMID: 39879316 PMC: 11823618. DOI: 10.1021/acsnano.4c15912.


Inverted All-Inorganic Nanorod-Based Light-Emitting Diodes via Electrophoretic Deposition.

Zhang Y, Jia N, Laishram D, Shah K, Lyu L, Gao M ACS Appl Nano Mater. 2024; 7(20):23617-23626.

PMID: 39479554 PMC: 11519866. DOI: 10.1021/acsanm.4c03891.


Chemical Regulation of Fluorescence Lifetime.

Dai J, Zhang X Chem Biomed Imaging. 2024; 1(9):796-816.

PMID: 39473838 PMC: 11504423. DOI: 10.1021/cbmi.3c00091.


References
1.
Chen O, Zhao J, Chauhan V, Cui J, Wong C, Harris D . Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat Mater. 2013; 12(5):445-51. PMC: 3677691. DOI: 10.1038/nmat3539. View

2.
Cao H, Ma J, Huang L, Qin H, Meng R, Li Y . Design and Synthesis of Antiblinking and Antibleaching Quantum Dots in Multiple Colors via Wave Function Confinement. J Am Chem Soc. 2016; 138(48):15727-15735. DOI: 10.1021/jacs.6b10102. View

3.
Zhou J, Zhu M, Meng R, Qin H, Peng X . Ideal CdSe/CdS Core/Shell Nanocrystals Enabled by Entropic Ligands and Their Core Size-, Shell Thickness-, and Ligand-Dependent Photoluminescence Properties. J Am Chem Soc. 2017; 139(46):16556-16567. DOI: 10.1021/jacs.7b07434. View

4.
Park Y, Lim J, Klimov V . Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat Mater. 2019; 18(3):249-255. DOI: 10.1038/s41563-018-0254-7. View

5.
Hanifi D, Bronstein N, Koscher B, Nett Z, Swabeck J, Takano K . Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science. 2019; 363(6432):1199-1202. DOI: 10.1126/science.aat3803. View