Wang A, Doan T, Reddy C, Jone P
Children (Basel). 2025; 12(1.
PMID: 39857845
PMC: 11764430.
DOI: 10.3390/children12010014.
Sbrollini A, Leoni C, Morettini M, Swenne C, Burattini L
Heliyon. 2025; 11(1):e41195.
PMID: 39834449
PMC: 11742852.
DOI: 10.1016/j.heliyon.2024.e41195.
Ong S, Ahmad H
PeerJ. 2024; 12:e17045.
PMID: 39670104
PMC: 11636683.
DOI: 10.7717/peerj.17045.
Bota P, Thambiraj G, Bollepalli S, Armoundas A
Curr Cardiol Rep. 2024; 26(12):1477-1485.
PMID: 39470943
DOI: 10.1007/s11886-024-02146-y.
Fassina L, Lo Muzio F, Berboth L, Otvos J, Faragli A, Alogna A
J Cardiovasc Transl Res. 2024; 17(6):1307-1315.
PMID: 39017912
PMC: 11634911.
DOI: 10.1007/s12265-024-10546-2.
The remarkable potential of machine learning algorithms in estimating water permeability of concrete incorporating nano natural pozzolana.
Alsubai S, Alqahtani A, Hashim Muhodir S, Alanazi A, Ahmed M, Jasim D
Sci Rep. 2024; 14(1):12532.
PMID: 38822007
PMC: 11143256.
DOI: 10.1038/s41598-024-62020-3.
Deep learning from latent spatiotemporal information of the heart: Identifying advanced bioimaging markers from echocardiograms.
Chang A, Wu X, Liu K
Biophys Rev (Melville). 2024; 5(1):011304.
PMID: 38559589
PMC: 10978053.
DOI: 10.1063/5.0176850.
Use of Artificial Intelligence in Improving Outcomes in Heart Disease: A Scientific Statement From the American Heart Association.
Armoundas A, Narayan S, Arnett D, Spector-Bagdady K, Bennett D, Celi L
Circulation. 2024; 149(14):e1028-e1050.
PMID: 38415358
PMC: 11042786.
DOI: 10.1161/CIR.0000000000001201.
The Science of Precision Prevention: Research Opportunities and Clinical Applications to Reduce Cardiovascular Health Disparities.
Pearson T, Vitalis D, Pratt C, Campo R, Armoundas A, Au D
JACC Adv. 2024; 3(1).
PMID: 38375059
PMC: 10876066.
DOI: 10.1016/j.jacadv.2023.100759.
Principles for Health Information Collection, Sharing, and Use: A Policy Statement From the American Heart Association.
Spector-Bagdady K, Armoundas A, Arnaout R, Hall J, Yeager McSwain B, Knowles J
Circulation. 2023; 148(13):1061-1069.
PMID: 37646159
PMC: 10912036.
DOI: 10.1161/CIR.0000000000001173.
Improving the hERG model fitting using a deep learning-based method.
Song J, Kim Y, Leem C
Front Physiol. 2023; 14:1111967.
PMID: 36814480
PMC: 9939657.
DOI: 10.3389/fphys.2023.1111967.
Beyond high hopes: A scoping review of the 2019-2021 scientific discourse on machine learning in medical imaging.
Nittas V, Daniore P, Landers C, Gille F, Amann J, Hubbs S
PLOS Digit Health. 2023; 2(1):e0000189.
PMID: 36812620
PMC: 9931290.
DOI: 10.1371/journal.pdig.0000189.
Using machine learning to estimate the calendar age based on autonomic cardiovascular function.
Schumann A, Gaser C, Sabeghi R, Schulze P, Festag S, Spreckelsen C
Front Aging Neurosci. 2023; 14:899249.
PMID: 36755773
PMC: 9899796.
DOI: 10.3389/fnagi.2022.899249.
Outcome prediction for patients assessed by the medical emergency team: a retrospective cohort study.
Adielsson A, Danielsson C, Forkman P, Karlsson T, Pettersson L, Herlitz J
BMC Emerg Med. 2022; 22(1):200.
PMID: 36494620
PMC: 9733206.
DOI: 10.1186/s12873-022-00739-w.
Medication Adherence and Cardiometabolic Control Indicators Among American Indian Adults Receiving Tribal Health Services: Protocol for a Longitudinal Electronic Health Records Study.
Scarton L, Nelson T, Yao Y, Segal R, Donahoo W, Goins R
JMIR Res Protoc. 2022; 11(10):e39193.
PMID: 36279173
PMC: 9641513.
DOI: 10.2196/39193.
Clinical significance, challenges and limitations in using artificial intelligence for electrocardiography-based diagnosis.
Chung C, Lee S, King E, Liu T, Armoundas A, Bazoukis G
Int J Arrhythmia. 2022; 23(1):24.
PMID: 36212507
PMC: 9525157.
DOI: 10.1186/s42444-022-00075-x.
Real-World and Regulatory Perspectives of Artificial Intelligence in Cardiovascular Imaging.
Wellnhofer E
Front Cardiovasc Med. 2022; 9:890809.
PMID: 35935648
PMC: 9354141.
DOI: 10.3389/fcvm.2022.890809.
Predicting the Prognosis of Patients in the Coronary Care Unit: A Novel Multi-Category Machine Learning Model Using XGBoost.
Wang X, Zhu T, Xia M, Liu Y, Wang Y, Wang X
Front Cardiovasc Med. 2022; 9:764629.
PMID: 35647052
PMC: 9133425.
DOI: 10.3389/fcvm.2022.764629.
Use of Multi-Modal Data and Machine Learning to Improve Cardiovascular Disease Care.
Amal S, Safarnejad L, Omiye J, Ghanzouri I, Cabot J, Ross E
Front Cardiovasc Med. 2022; 9:840262.
PMID: 35571171
PMC: 9091962.
DOI: 10.3389/fcvm.2022.840262.
Machine learning techniques for arrhythmic risk stratification: a review of the literature.
Chung C, Bazoukis G, Lee S, Liu Y, Liu T, Letsas K
Int J Arrhythmia. 2022; 23.
PMID: 35449883
PMC: 9020640.
DOI: 10.1186/s42444-022-00062-2.